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Robotics in horticulture is revolutionizing conventional agricultural methods, providing 

substantial enhancements in productivity, accuracy, and cost-efficiency. This analysis 

assesses the present status of robotic harvesting systems for horticulture crops, with a 

specific emphasis on progress, obstacles, and potential future developments. According 

to statistical data, the worldwide agricultural robot market was worth USD 4.6 billion in 

2020. It is projected to see a compound annual growth rate (CAGR) of 20.8% and reach 

USD 20.3 billion by 2026. Special emphasis is placed on the implementation of robots in 

the fruit picking industry, which is expected to see significant advantages as a result of 

manpower shortages and the requirement for accuracy. Presently, robotic systems are 

able to pick fruits at an average pace of 10-12 seconds per fruit, while maintaining an 

accuracy rate of 85-90%. Nevertheless, there are still obstacles to overcome in the adoption 

of this technology, including the significant upfront expenses, the current technological 

constraints in handling fragile fruits, and the requirement for enhanced integration of 

sensory and artificial intelligence capabilities. Future developments are expected to 

prioritize the enhancement of machine learning algorithms, the improvement of robotic 

dexterity, and the reduction of prices. The ultimate goal is to boost the rate of adoption of 

robotic systems in horticultural harvesting to more than 50% by 2030. This review 

emphasizes the capability of robotic harvesting to transform horticulture, by tackling 

important problems and facilitating the adoption of sustainable farming methods.

Keywords: Robotics, Automation, Agriculture, Precision harvesting, Horticultural 

practices

India is second in horticulture crop production, following 

China. Horticulture is an important sub-sector of agriculture 

in the Indian economy. India's horticulture production has 

witnessed remarkable growth in recent years, mostly due to 

significant progress in expanding the cultivation area, 

resulting in higher output. According to Anonymous (2022), 

the horticulture sector has shown a consistent annual growth 

rate of 2.20% over the past decade, leading to a significant 

2.30% rise in production. In the fiscal year 2020–21, the 

production of horticulture crops amounted to 334.60

million metric tons, cultivated on an area of 27.48 million 

hectares. In the fiscal year spanning from 2019-20 to 2020-21, 

vegetable production saw a significant increase from 189.46 

million metric tons to 197.23 million metric tons. Similarly, 

fruit production also saw a notable rise from 100.45 million 

metric meters to 103.03 million metric tons, according to 

Anonymous, 2022. The significant progress highlights the 

horticulture sector's critical contribution to stimulating 

growth in the Indian agriculture sector. Currently,

India has an incredible horticulture production of 342.33 

million metric tons, grown on 28.08 million hectares of land 

(Anonymous, 2022). Precision agriculture optimizes 

agricultural practices based on spatially variable data, 

including tillage, planting, irrigation, fertilizer application, 

pesticide spraying, and harvesting. This transformation

from traditional extensive production to intensive

production is particularly beneficial for horticulture

crops.

Implementing farm mechanization in Indian horticulture for 

activities such as transplanting, sowing, spraying, inter-

cultural operations, fertilizer application, and harvesting can 

improve the overall production, productivity, and quality of 

horticultural products. Horticultural mechanization 

encompasses a range of methods and processes for cultivating 

plants, performing tasks, implementing technical procedures, 

employing suitable soil management systems, utilizing 

orchard tractors, employing soil-working machinery, 

employing machinery for mulching and mowing grass, using 

post hole diggers, spreaders, sprayers, front-fitted knife 

trimmers, harvesting machinery, transportation equipment, 
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shakers, harvesters, and more. Khandetod (2018) calculates 

that the power density needed to guarantee prompt 

operations is 3.75 kW ha1

Precision farming techniques have proven to be highly 

effective in various aspects of horticultural cultivation, as 

demonstrated by Ehsani et al. (2004). Seed planters and 

transplanters with RTK-GPS are used to accurately place row-

crop plants. Other technologies include wireless sensor 

networks (WSNs) for monitoring crop stress, site-specific 

variable rate irrigation, robotic systems for quickly finding 

and getting rid of weeds, microcontroller-driven variable

rate herbicide and pesticide application systems, and 

automated harvesting and yield monitoring systems. These 

approaches provide both accuracy and cost-efficiency by 

minimizing the requirement for significant human 

intervention and preserving precious agricultural resources 

(Tiwari et al., 2019).

Several mechanical methods are available for collecting fruit, 

including limb shakers, canopy shakers, trunk shaking, air 

blasting, and robotic harvesting. According to Torregrosa et al. 

(2009), the tractor-mounted shaker had a detachment rate of 

72%, which was higher than the hand-held shakers' 

detachment rate of 57%. Intense vibrations led to significant 

leaf loss and harm to the tree's outer layer.

Researchers have conducted extensive research on the 

application of robots and automation across various domains, 

demonstrating their technical feasibility. Recent research and 

advancements have been made in the application of robots to 

horticulture, encompassing the associated concepts, 

principles, limitations, and areas that require further 

development. The adoption of intensive farming practices, 

mechanization, and automation has significantly contributed 

to the remarkable increase in horticultural output. Precision 

seeding and planting is a method that enhances plant growth 

by ensuring more accuracy and consistency (Tremblay et al. 

2011). 

RTK-GPS-enabled seed planters or transplanters, as 

demonstrated by Ehsani et al. (2004), can accurately map the 

geographic location of agricultural seeds or transplants as the 

planter releases them. Precision fertigation is a method that 

involves supplying water and necessary plant nutrients at the 

optimal time and place, resulting in decreased utilization of 

agricultural resources and reduced environmental 

consequences (Abioye et al., 2022). Remote sensing and fuzzy 

inference algorithms improved nitrogen delivery throughout 

the growth period, resulting in similar crop yields with 31% 

less nitrogen (Tremblay et al. 2011). Tillett et al. (2008) tested a 

computer vision-based weeding device that can locate and 

remove weeds inside rows. Recent studies show that 

autonomous tractors or robots reduce fuel consumption and 

air pollution in agriculture. Automation has increased 

machinery efficiency, reliability, and accuracy while reducing 

human interaction. The agricultural industry still lacks skilled 

laborers, especially in horticulture. Larger farms, fewer 

farming experts, and a greater ecological impact on 

cultivation all contribute to labor shortages. These scenarios 

require more efficient agricultural practices and conventional 

farming productivity when farmers manually cultivate and 

manage crops. Adding smart machines can enhance these 

operations. 

Robotics and automation require a greater upfront investment 

in professional staff and machinery, but they improve 

agricultural efficiency by reducing labor costs and relying 

largely on experienced machine operators. Jyoti et al. (2020) 

and Gatkal et al. (2023) found that agricultural robotics and 

automation reduce manual labor and boost yield. The aging of 

agricultural laborers and the decline in farms suggest that this 

field is not attracting newer workers. Despite the challenges of 

integrating automation and robotics into agricultural 

practices, we hope that farmers' quality of life and reduced 

workload will make farming more appealing. Unfortunately, 

agricultural robotics and automation require more complex 

technology than industrial ones. Complexity, lack of 

repetition, and unpredictability distinguish agricultural 

employment from industry's basic, repeatable, well-defined, 

and predictable duties. We must address complex and ever-

changing problems to ensure productivity. Agriculture also 

produces perishable goods, including fruits, vegetables, 

cereals, and flowers, which are susceptible to temperature, 

moisture, gas, force, degradation, and velocity. These goods 

are fragile and require precise, complicated control 

techniques to maintain quality from manufacturing to end 

users. 

This trait makes replacing human abilities with technology or 

automation difficult. Thus, we still need human labor to 

support plants with trellises, gather crops, organize them, and 

prepare them for sale. Manual labor accounts for up to 40% of 

field operations costs (Bechar & Eben-Chaime, 2014). 

Agricultural operations are characterized by dynamic, 

unpredictable situations with rapid time and spatial changes. 

These military, aquatic, and space environments have 

unstable and unpredictable air conditions, illumination, 

visibility, flora landscape, and topography. Four types of 

robotic systems exist based on their structural qualities in 

relation to their surroundings and objects (Bechar & Eben-

Chaime, 2014): a) environments with a clear organization and 

defined objects; b) environments without a clear organization 

but with defined objects; c) environments without a clear 

organization but without defined objects; and d) 

environments without a clear organization and defined 

objects.

RESEARCH GAP

India is a major global player in horticulture crop production, 

ranking among the world's largest producers. It holds the 

second position in fruit and vegetable production, making a 

significant impact on the global agricultural industry. The 

horticulture sector in India makes up around 33% of the gross 

value-added (GVA) in agriculture, playing a key role in the 

country's economy (Anonymous, 2023). Although bulk 

commodities like maize, rice, and wheat are primarily 

mechanized, horticulture crops such as fruits, vegetables, and 

nursery crops, which are considered high-value crops, still 

rely heavily on manual labor (Silwal et al., 2017). Because 

horticulture products are perishable, they must be handled 

with care during harvesting. Rough handling can cause harm 
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to the product and decrease its commercial worth. In contrast 

to staple crops like wheat and rice, which reach maturity 

equally, fruits and vegetables frequently do not mature evenly. 

As a result, many operations are required to harvest the 

mature produce (Kootstra et al., 2021). This requirement 

necessitates a significant investment of time and manual work 

to complete the harvesting process. Moreover, the labor-

intensive process of harvesting horticulture crops has 

additional difficulties, such as shortages of personnel, rising 

labor expenses, and the requirement for competent laborers 

who can accurately identify and selectively harvest mature 

crops. To address these issues, researchers are progressively 

investigating the utilization of robotics in diverse agricultural 

tasks, such as transplanting, weeding, spraying, and 

harvesting. Engineers specifically design agricultural robots 

to perform repetitive and targeted tasks, thereby reducing 

costs and saving time. Deploying these robots has the capacity 

to improve the productivity of horticulture fields and reduce 

produce shortages (Barbashov et al., 2022).

METHODS OF ROBOT HARVESTING IN 

HORTICULTURAL CROPS

The worldwide population growth is driving an increase in 

the demand for food, which in turn requires a higher level of 

agricultural productivity. Agricultural operations include 

rigorous physical exertion, and the scarcity of labor during 

high-demand periods, such as harvesting, presents 

substantial difficulties (Koostra et al., 2021). Harvesting is an 

essential stage in the crop production cycle. In India, the 

majority of farms are tiny or marginal, with an average size of 

approximately 1.08 hectares. Because of this, farmers in India 

generally rely on physical labor for harvesting, especially in 

horticulture crops. Urban migration and an aging population 

have exacerbated this dependence on physical labor. In light 

of these circumstances, there is an urgent requirement for 

enhanced automation and robotization in the agriculture 

sector to fulfill the growing food demand and tackle labor 

shortages.

We collected data on existing horticultural crop harvesters 

and harvesting techniques to examine the current patterns of 

mechanization and automation in horticultural crop 

harvesting. More precisely, we were looking for case studies 

that specifically examined the use of robots for harvesting, 

and we narrowed down our search to those that specifically 

focused on horticultural crops. Robotic harvesters prioritize 

selective harvesting, which means they focus on collecting 

only fully grown crops while leaving the underdeveloped 

ones for future harvests. Machine-vision systems facilitate this 

process. The search criteria used to find similar publications 

included machine vision, selective harvesting, and robotic 

harvesters.

In the last thirty years, there has been considerable focus on 

researching and developing agricultural robotic systems, 

specifically for orchard crops such as citrus, apple, cotton, 

tomato, melon, and watermelon (Bechar & Vigneault, 2017). 

Researchers have developed a range of specialized harvesters 

designed for specific crops. Examples of research and 

advancements in apple harvesters include the contributions of 

Onishi et al. (2019), Silwal et al. (2017), and De-An et al. (2011). 

Zhao et al. (2016), Lee et al. (2019), and Feng et al. (2018) have 

conducted studies on tomato harvesters.

Furthermore, Bac et al. (2017), Lehnert et al. (2020), Arad et al. 

(2020), and Lee et al. (2019) have made notable progress in the 

development of sweet pepper harvesters. Hayashi et al. (2010) 

and Xiong et al. (2020) have conducted studies on strawberry 

harvesters. Williams et al. (2019) and Barnett et al. (2020) 

achieved significant advancements in the field of kiwifruit. 

Almendral et al. (2018) have made significant contributions to 

the advancement of orange harvesters.

We thoroughly examined the methods and technology used in 

each instance, specifically focusing on the incorporation of 

machine vision systems to enable targeted harvesting. These 

improvements emphasize the growing trend towards 

improved automation and efficiency in horticulture crop 

harvesting.

Different methods for harvesting fruit, vegetables, and 

flowers

Different mechanism is used to harvest fruits, vegetables

and flowers. Crop is picked up by end effecter with the

help of robotic arm. The mechanism to be used is decided 

based on characteristics of the product such as type, 

attachment strength, structure of plant etc. to maximize the 

efficiency. 

Plucking: 

Plucking is a simple method of robotic harvesting in which

an arm or grasper grabs the fruit and pulls the fruit away

from the plant. The gripping mechanism may have soft or 

flexible fingers to minimize damage to the fruit or plant

(Fig. 1).

Fig. 1: Robot for plucking kiwifruit (Williams et al. 2019)

Twisting: This method involves applying a twisting motion to 

detach the fruit from the plant. The fruit is held firmly in the 

robot's gripping mechanism while being gently rotated until 

the stem is removed (Fig. 2). Fruits like apples and pears, 

where the stem serves as a natural attachment point, are 

frequently twisted.
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Suction: 

The fruit is held against the robot's gripper by a vacuum 

system in suction-based picking techniques (Fig. 3). A pump 

or fan generates a vacuum, and the force of the suction holds 

the fruit to the gripper as the robot takes it away from the 

plant. Once the fruit is in a safe position, the vacuum is 

released, and the fruit is collected.

Fig. 2: Apple plucking and twisting with robotic arm

(Silwal et al., 2017)

Fig. 3: Apple plucking and twisting with robotic arm

(Silwal et al., 2017)

Cutting: 

Fruits are clipped from the plant to be picked. Robotic 

harvesters can precisely cut off the fruit's stem or attachment 

point when outfitted with small cutting tools like blades

or scissors (Fig. 4). To ensure a clean cut and prevent injuring 

the fruit or neighbouring plant tissues, care must be

exercised.

Fig. 4: Robotic arm with cutting type end effecter 

(Masood et al., 2021)

Shaking: 

For fruits like berries or cherries that are lightly bound to the 

plant, shaking is a frequent approach. The robot shakes or 

vibrates in a regulated manner to move the fruits, which then 

drop into trays for collection or onto conveyor belts. In order 

to avoid causing significant harm to the plant or young fruits, 

this procedure needs to be carefully managed.

Shaking: 

A widely used harvesting technique for delicate fruits like 

berries or cherries is shaking the plant. This technique 

involves the robot delicately oscillating or vibrating the plant 

in a regulated manner. This exact shaking motion results in the 

separation and descent of the mature fruits onto collection 

trays or conveyor belts located underneath. It is imperative 

that this procedure is carefully controlled to avoid harm to the 

plant itself or to immature fruits that should stay connected. 

The controlled agitation guarantees the selective gathering of 

only fully developed fruits, so preserving the well-being and 

production of the plant for subsequent harvests. This method 

emphasizes the significance of accuracy in robotic harvesting 

to attain effectiveness without jeopardizing the quality of the 

product.

Raking: 

For crops that grow near to the ground, like strawberries, 

raking is a common technique. The robot carefully combs over 

the plants with a unique instrument that resembles a rake and 

has soft bristles or tines, gathering the ripe fruits into a 

container.

AUTONOMOUS ROBOT SYSTEM

Autonomous robot systems (ARS) have been developed to 

carry out tasks, make decisions, and operate in real-time 

without the need for human involvement. Recently, there has 

been a growing emphasis on mobile autonomous robotic 

systems (ARS) study in unstructured situations, both indoors 

and outdoors. Perceiving and logical thinking are 

fundamental prerequisites for achieving a satisfactory level of 

independence. Therefore, Autonomous Robotic Systems 

(ARS) must exhibit a significant level of adaptability in order 

to effectively navigate through dynamic environmental 
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circumstances and effectively analyze the data collected by its 

sensors (Bechar et al., 2016). They are necessary in some fields 

that often require decreases in labor and effort, and are most 

appropriate for tasks that need consistent precision and high 

productivity in stable circumstances.

Components of ARS for horticulture crop harvesting

Horticultural crop harvesting necessitates the use of 

Automated Robotic Systems (ARS), which are composed of 

various interconnected components and tools that work 

together to perform their tasks (Fig.5). These elements include 

steering and control mechanisms, path planning, navigation, 

mobility, sensing capabilities, manipulators or robotic arms, 

and end effectors (devices that come into contact with the 

produce). Crucially, these systems also incorporate 

instructions for handling unforeseen events independently or 

simultaneously. Agribots are mainly designed to perform 

specific agricultural tasks, typically focusing on harvesting.

Similarly, Ceres et al. (1998) designed and applied a structure 

for a robot that harvesting the citrus and was integrated with 

human assistance (Fig. 6). In addition, Hellstrom and 

Ringdahl (2013) developed a framework specifically tailored 

for agricultural and forestry robots.

Fig. 5: Task sub-system structure of agricultural robot

Nguyen et al. (2013) developed and implemented a framework 

for arranging the movement and hierarchical task scheduling 

of a robot specifically designed for harvesting apples. To 

achieve modularity and reusability, the harvesting task has 

been divided into four sub-domains: 

 Target list: 

Handles the target of the harvesting task, includes fruit 

detection (location, orientation, size, etc), detaching situation 

recognition. The detaching situation derived from sensing 

data of objects present in action radius will be used to decide 

which detaching strategies would be used. 

Collision map: 

The collision map includes the compressed 3D point cloud 

data with annotations of the current target, the future targets 

with pre-planning order and other obstacles. 

Navigation: 

Handles the arm navigation in the collision map. This 

provides the manipulator ability to approach target, perform 

the detaching movement based on the pre-defined strategies.

Task planner: 

Handles the sequence and schedule of sub-tasks, chooses the 

predefined detaching movement and plans the order of the 

targets. It also includes the condition monitoring for each sub-

task

Fig. 6: Hierarchical planning and execution 

ree for apple harvesting robot

Sensing and navigation

The worldwide population growth is driving an increase in 

the demand for food, which in turn requires a higher level of 

agricultural productivity. Agricultural operations include 

rigorous physical exertion, and the scarcity of labor during 

high-demand periods, such as harvesting, presents 

substantial difficulties (Koostra et al., 2021). Harvest

Independent navigation is a crucial component of automation 

in agriculture. Initially, agricultural navigation systems 

employed cameras as sensors, relying on computer vision 

techniques. Autonomy in navigation, guidance, and 

transportation can be classified into three levels: conventional 

steering, a system that is supported or automated by a human 

operator (under the supervision of a higher authority), and a 

fully autonomous system (Bechar et al., 2016). The system can 

prioritize navigation and guidance as its main goal, such as 

when transporting crops from the farm to the packing site. 

Alternatively, it can use navigation and guidance as secondary 

tasks to assist its main function, such as supporting spraying 

or transporting a robot between trees during the harvesting 

process (Bechar et al., 2016). Current navigation systems for 

agricultural vehicles use the geographic position system 

(GPS) as the primary sensor for steering control. However, in 

situations such as orchards where the tree canopy blocks the 

satellite signals received by the GPS, there is a requirement for 

an alternative method (Lipinski et al., 2016).

Machine Vision 

Visual fruit detection is an essential component in developing 

an autonomous robotic harvesting system. The fruit detection 

technique utilizes a machine vision algorithm developed by 

Silwal et al. (2017). This program combines two primary 

methodologies to precisely detect apples, even in intricate 

surroundings. Firstly, it utilizes the Circular Hough 

Transformation (CHT), which is highly skilled at identifying 

individual apples that are separate from each other in a group. 

The CHT methodology detects circles based on their 

geometric characteristics by converting the image into a 

parameter space. This method is especially efficient at 

detecting spherical fruits, such as apples, among greenery. 

Additionally, for apples that are only partially visible or 

hidden by foliage and branches, the method employs blob 
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analysis (BA) in an iterative manner. The technique of blob 

analysis identifies areas in an image with distinct qualities, 

like variations in brightness or color, compared to the 

surrounding regions. The algorithm is capable of detecting 

and segmenting apples that are only partially visible through 

iterative application of BA, thereby increasing the overall 

detection rate. We evaluated the efficacy of this dual-

technique approach in demanding settings characterized by 

dense clusters and complex canopy topologies. Surprisingly, 

the system has demonstrated fruit identification accuracy that 

is greater than 90% in these circumstances. The robotic 

system's manipulation components depend on accurate 

identification and precise location of the fruits in order to grip 

and collect them without inflicting any damage. Scientists and 

engineers have recently investigated various machine vision 

approaches to improve fruit identification. These 

improvements encompass the utilization of deep learning 

models, spectral imaging, and 3D vision systems. Each 

method possesses distinct advantages, including enhanced 

precision, the capability to accommodate various fruit shapes 

and sizes, and resilience under diverse lighting situations.

Fruit detection

The unpredictable and fluctuating lighting conditions in the 

outdoor environment, along with the intricate and diverse 

canopy structures, can influence the performance of machine 

vision systems in identifying and pinpointing fruit (Karkee & 

Zhang, 2012). People widely employ color to distinguish fruits 

and vegetables from their surroundings and backgrounds. 

Changing lighting conditions can greatly affect the initial step 

of image segmentation, crucial for fruit identification, by 

altering the physical properties (texture and color) necessary 

for fruit identification. As a result, segmentation has 

frequently led to significant errors in vision systems. 

Researchers have looked into more ways to identify fruits 

besides color. These include using global mixtures of 

Gaussians, geometric properties, BA, region growth, and 

CHT for texture-based segmentation. In recent years, the use 

of machine learning tools for fruit identification by pixel 

classification has gained attention. People widely recognize 

artificial neural networks (ANN) and support vector 

machines (SVM) as the leading options in the domain of 

robotic fruit harvesting.

Fruit localisation

Fruit localization, in the context of fruit harvesting, refers to 

the identification and tracking of fruit on a plant or tree to 

determine its exact position and ripeness with respect to a 

fixed or reference point of the machine (Gongal et al., 2015). 

Fruit localization is a crucial step in modern fruit harvesting as 

it ensures the efficient and selective harvest of ripe fruit, 

leading to higher quality yields, reduced waste, and improved 

resource management. Laser range finders operate by 

utilizing the principle of time-of-flight (TOF) of light. A laser 

distance sensing device consists of a laser transmitter that 

releases pulsed laser rays, as well as a detector that captures 

the rays reflected from objects. The distance between the item 

and the detector directly influences how long it takes the laser 

beam to bounce back after making contact with it. 

Stereovision systems, on the other hand, employ two or more 

cameras positioned at a specific distance from each other. By 

contrasting numerous images captured by these cameras, the 

systems ascertain the spatial divergence (or disparity) of 

objects between the two images. The cameras' relative 

positions and orientations, along with their focal lengths, 

transform the image disparity into distance measurements. 

TOF cameras, alternatively referred to as 3D cameras, 

function based on a comparable concept as laser distance 

sensors yet deliver a comprehensive distance depiction of the 

entire environment simultaneously. The PMD CamCube 3.0, 

developed by PMD Technologies in Siegen, Germany, acts as 

an instance of such a camera. In addition to delineating 

distances, these cameras also provide information about the 

magnitude and three-dimensional positions of objects within 

the visual range. In contrast to alternative 3D sensing systems 

such as stereoscopic cameras, 3D cameras facilitate swifter 

data acquisition and processing for 3D localization of objects. 

Manipulator path planning

The scheduling of trajectory points and path planning poses 

fundamental challenges for autonomous robotic systems. One 

of these challenges involves determining the quickest route to 

navigate a path within the reachable workspace of a robotic 

system. Time-optimal path parameterization (TOPP) is a 

widely researched issue in robotics with diverse real-world 

implementations. To address TOPP, there are two primary 

categories of methods: numerical integration (NI) and convex 

optimization (CO), which are characterized by their speed but 

pose challenges in implementation and are susceptible to 

robustness concerns. On the other hand, CO-based 

approaches offer greater robustness but are significantly 

slower. Pham et al. (2018) suggest an innovative method using 

reachability analysis to tackle TOPP.

We present a hierarchical optimal path planning (HOPP) 

algorithm from a broad robotic path planning perspective, 

which falls under the category of offline path planning. The 

apple harvesting robot possesses advanced knowledge of the 

3D environment of the apples and their trees, enabling it to 

have complete information. However, the HOPP algorithm 

can also operate in real-time if additional data such as apple 

positioning and three-dimensional reconstruction become 

available during data collection. Moreover, the HOPP 

algorithm specifically belongs to the point-to-point path 

planning category. In other words, its aim is to ascertain an 

enhanced route from an initial location to a final location by 

taking into account important factors such as duration and 

distance. The algorithm (HOPP) shares similarities with the 

method of cell decomposition commonly employed in robotic 

trajectory planning. This method involves dividing the free 

space into small regions known as cells, which in this case 

correspond to apple harvesting zones. Subsequently, the 

algorithm searches for an optimal path within this cell 

structure using well-known algorithms like A*, Dijkstra, or 

TSP (Travelling Salesman Problem).

Additionally, the HOPP algorithm bears resemblances to the 

coverage path planning (CPP) algorithms. CPP focuses on 



September 2024 Kumar et al [Journal of AgriSearch, Vol.11, No.3]

158

determining a trajectory that covers all important points 

within a workspace volume while also keeping away from 

obstacles. In this study, CPP aims to identify a route that 

passes through all apple harvesting zones, all the while 

avoiding obstacles.

HARVESTING AND PICKING ROBOTS

Farmers currently harvest most horticultural crops, including 

fruits and vegetables, manually. This process is time-

consuming and labor-intensive, primarily due to the uneven 

ripening of these crops. Robotics and automation offer a 

promising solution to these challenges. Robotic harvesters 

utilize computer vision and sensors to detect and locate fruits 

on trees. A robotic arm with specialized end effectors picks the 

identified fruits. The detection process employs machine 

vision techniques and various sensors, such as thermal 

cameras or RGB cameras, to identify fruits based on color, 

temperature differences, texture, and other attributes. Table 1 

presents several examples of robotic harvesters. Figure 7 

depicts the robotic fruit harvester, a notable development by 

Onishi et al. (2019). This harvester uses a stereo camera and a Fig. 7: Developed apple harvester

robotic hand to detect and detach fruits. Within two seconds, 

the camera can identify the position of 90% or more of the 

fruits. The entire process of harvesting a single fruit takes 

approximately 16 seconds. Any variety of apples and fruits 

that resemble apples can use this versatile system.

Table 1: Types of harvesting robots

  
 

Object Mechanism Appearance Reference

Tomato Zhao et al. (2016)

Strawberry Hayashi et al. (2010)Suction and 

cutting

Apple Onishi et al. (2019)Twisting

cutting
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Object Mechanism Appearance Reference

Iceberg lettuce Birrell et al. (2020)Cutting and 

picking

Kiwifruit Williams et al. (2019)Plucking

Chile pepper Masood et al. (2021)Cutting

Apple Silwal et al. (2017)Pulling and 

twisting

Apple De-An et al. (2011)Cutting
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Object Mechanism Appearance Reference

Sweet pepper Lee et al. (2019)Cutting 

Cucumber Van Henten et al. (2003)Cutting 

Coconut Parvathi, and Selvi (2017)Cutting 

Kiwifruit Barnett et al. (2020)Plucking 

Strawberry Xiong et al. (2020)Picking 
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Object Mechanism Appearance Reference

Sweet pepper Lehnert et al. (2020)Suction and 

cutting 

Sweet pepper Arad et al. (2020)Cutting

Cherry tomato Feng et al. (2018)Cutting

Sweet pepper Bac et al. (2017)Cutting

Orange Almendral et al. (2018)Cutting
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like sowing, weeding, irrigation, and harvesting. Future 

redesigned and optimized machines will perform better in 

terms of speed and quality (Ven Henten et al., 2016).

The use of robotics in horticultural crop harvesting

presents significant opportunities to increase productivity, 

reduce labor costs, and address labor shortages in the 

agricultural sector. Subsequent investigations in this domain 

should concentrate on improving harvesting robots' 

capacities to make them more adaptable, accurate, and 

economical.

The complexity of the crop environment, which is defined as 

the robot's working environment, is the primary bottleneck to 

better performance. There are numerous causes of variation in 

crop environments that are important for robotic harvesting. 

Robotic harvesting harvests objects with poorly defined 

placements, forms, sizes, and colors. Occluding branches and 

leaves make objects difficult to see and reach. By improving 

gripper technology, vision systems, and machine learning 

algorithms for fruit detection and handling, we can create 

robots that can harvest a variety of fruits, including those with 

delicate or unusual shapes. It is necessary to lessen the need 

for specialized machinery and investigate the viability of 

developing robots that may alternate between harvesting 

various crops (such as apples, berries, and tomatoes) within 

the same horticulture environment. The design of robots 

capable of prolonged autonomous operation can reduce the 

need for human intervention and increase the financial 

viability of large-scale harvesting operations. Examine ways 

to handle fragile fruits and vegetables more delicately, 

minimizing damage and waste during the harvesting process, 

by utilizing soft robotics, such as soft grippers and actuators.

Fruit is grown in a variety of production environments with 

varying lighting conditions. These systems affect the fruit's 

visibility and accessibility. For many crops, color serves as a 

ripeness indicator, and different crops have different ripeness 

requirements. Improve the vision systems of harvesting 

robots so they can more accurately detect, find, and classify 

ripe crops in cluttered, complex environments—even in 

different lighting conditions. Develop robotic systems 

equipped with tactile sensors, enabling precise and gentle 

harvesting of produce by utilizing touch to assess its quality 

and ripeness. Enhancing the robot's ability to manipulate and 

deftly handle various crop types and conditions, including 

those with thorns, spines, or irregular growth patterns, is 

crucial. Enhancing the localization and navigation capabilities 

of harvesting robots is crucial for their efficient operation in 

diverse environments like fields, greenhouses, and orchards, 

while also enabling them to avoid obstacles and elevation 

changes. 

We are optimizing harvesting strategies by integrating robotic 

systems with real-time data analytics, taking into account 

factors such as crop maturity, meteorological conditions, and 

resource availability. We are examining power sources and 

energy-efficient robot designs, taking into account solar 

energy, battery technology, and energy recovery systems. 

Investigate strategies for encouraging productive and safe 

interactions between human laborers' and harvesting robots 

in mixed human-robot teams. Enhance wireless 

Challenges in Robotic Harvesting of Horticultural Crops

Robotic harvesting of horticultural crops presents several 

significant challenges that must be overcome for successful 

implementation. These challenges include:

1. Differentiating between Ripe and Unripe Crops: One of 

the primary hurdles is the ability to distinguish between ripe 

and unripe fruits or vegetables. This requires sophisticated 

vision and sensing technologies capable of accurately 

identifying and classifying crops based on maturity. 

Advanced machine learning algorithms and multispectral 

imaging can be employed to enhance the precision of this task.

2. Handling Delicate Crops: Many horticultural crops are 

fragile and susceptible to damage during harvesting. Robotic 

systems must be designed to handle these crops with 

exceptional care to avoid bruising, scarring, or other forms of 

damage. This involves developing end effectors with soft, 

adaptive grips and precise control mechanisms to gently pick 

and place the produce.

3. Adapting to Crop Variability: Horticultural crops often 

exhibit significant variability in shape, size, and orientation. 

Robots need to be highly adaptable to these variations, 

employing flexible harvesting methods and dynamic 

adjustment capabilities. This might include using 3D vision 

systems and adaptive algorithms that can modify the robot's 

actions in real-time based on the specific characteristics of 

each fruit or vegetable.

4. Navigating Unstructured Environments: Agricultural 

fields are typically uneven and filled with obstacles such as 

rocks, weeds, and irrigation equipment. Developing robots 

that can navigate these unstructured environments without 

causing damage is a substantial challenge. Robust locomotion 

systems, obstacle detection, and avoidance technologies are 

essential for ensuring efficient and safe operation in such 

conditions.

5. Cost-Effectiveness: The development and deployment of 

robotic harvesting systems can be expensive. Growers must 

consider the cost-effectiveness of these systems compared to 

manual labor. Although robots can potentially reduce long-

term labor costs and increase efficiency, the initial investment 

and maintenance costs must be justified by the benefits.

6. Ensuring Safe Human-Robot Cooperation: In scenarios 

where human workers are present alongside robots, ensuring 

safe and efficient human-robot interaction is crucial. This 

involves implementing safety protocols, designing robots 

with collision detection and avoidance capabilities, and 

creating interfaces that allow for seamless cooperation 

between human workers and robotic systems.

Addressing these challenges requires a multidisciplinary 

approach, integrating advancements in robotics, computer 

vision, artificial intelligence, and agricultural sciences. By 

tackling these issues, the potential for robotic harvesting to 

revolutionize horticulture becomes increasingly feasible, 

promising increased efficiency, reduced labor costs, and 

improved crop handling.

Way Forward

Presently, the robots are performing different tasks 

individually according to different agricultural operations 
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communication between farm management systems and 

robots to allow for better control and coordination of several 

robots during a harvesting operation. We are developing 

systems to minimize waste in the harvesting process, such as 

automated systems that remove spoiled or underripe crops 

and simplify the packing process. We are also exploring 

methods to operate robots in challenging conditions like 

dusty, wet, or extremely high temperatures without 

compromising their functionality.

Look into strategies to lower the cost and increase the 

accessibility of harvesting robots for farmers with fewer 

resources and a smaller farm, perhaps by utilizing shared 

technology platforms and open-source designs. Establishing a 

comprehensive and effective harvesting pipeline requires 

harvesting robots that are simple to integrate into other 

agricultural systems, such as packing and post-harvest 

handling. Integrating robotic operations into a 

comprehensive agricultural system offers several advantages. 

The robots can work collaboratively, communicating and 

sharing data to optimize farming practices. For instance, 

farmers can adjust irrigation schedules or plan harvesting 

operations efficiently using the data collected during crop 

maturity monitoring. Farmers can combine all of their 

operations to create a fully autonomous farming system. This 

system would involve a network of interconnected robots, 

sensors, and AI algorithms working together to perform tasks 

such as sowing, weeding, irrigation, monitoring crop 

maturity, harvesting, sorting, and packaging. Farmers can 

remotely monitor and control the robots, enabling them to 

make informed decisions and intervene when necessary.

Such a system offers benefits like increased productivity, 

reduced labor costs, improved resource management, and 

minimized environmental impact. Additionally, we can 

analyze the collected data from these operations to gain 

insights into crop performance, disease detection, and yield 

optimization, thereby enabling continuous improvement in 

farming practices. Overall, the future of agricultural robots 

holds tremendous potential to revolutionize the agricultural 

sector by making it more efficient, sustainable, and 

productive.

CONCLUSION

Ultimately, the progress in robotic technology for the 

collection of horticulture crops has demonstrated substantial 

potential in enhancing productivity, decreasing labour 

expenses, and mitigating crop harm. The paper emphasizes 

that robotic systems, which utilize machine vision, artificial 

intelligence, and advanced manipulation techniques, have 

shown the capacity to handle the fragile characteristics of 

horticultural produce with growing accuracy. Research 

indicates that robots outfitted with advanced sensors and 

adaptive algorithms can achieve harvest rates that are equal to 

or greater than those of human workers, while also greatly 

decreasing physical exertion and operational expenses. 

Recent trials involving robotic strawberry harvesters have 

demonstrated a picking accuracy of 95% and a 30% gain in 

harvest efficiency compared to manual approaches. 

Nevertheless, there are still significant obstacles to overcome 

in the field of agriculture, including the substantial upfront 

costs, the unpredictable nature of agricultural attributes, and 

the ongoing requirement for advancements in sensory and 

decision-making technologies. Initial findings from pilot 

implementations suggest that the cost-effectiveness of robotic 

harvesters increases as the scale of operation grows. However, 

additional study is necessary to improve the ability of these 

systems to work with different types of crops and various 

environmental circumstances. In addition, the integration of 

robots with precision agriculture technologies and

real-time data analytics has the potential to enhance the 

efficiency of harvesting operations. In order to overcome 

current limitations and advance the practical applications of 

robotic harvesting technology, it is essential for the field to 

continue to collaborate across disciplines and invest in 

research and development. This will ultimately contribute to 

the sustainability and productivity of horticultural 

agriculture.
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