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Rajasthan, and Gujarat, has been subject to limited comprehensive long-term studies
despite its susceptibility to climate-induced hydrological stress. This study seeks to
evaluate long-term trends in climate variables and drought patterns in the Mahi river
basin from 1985 to 2022. Utilizing historical climate data and key drought indices
Standardized Precipitation Index (SPI), Rainfall Anomaly Index (RAI), and Standardized
Anomaly Index (SAI) in conjunction with statistical tools such as Principal Component
Analysis (PCA), we assess changes in temperature, precipitation, and drought severity.
The results indicate a 1.2°C increase in average annual temperature and significant
interannual variability in precipitation, contributing to more frequent and intense
drought events. PCA results revealed that SPI and precipitation collectively account for
100% of the variance in drought behavior, underscoring their critical role in drought
monitoring. These findings underscore the necessity for adaptive water resource
management strategies to enhance resilience in the face of increasing climate variability.
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INTRODUCTION

Droughts are temporary deviations that can occur in various
climate zones, unlike the consistently dry conditions typical of
regions with low rainfall. These extended dry spells usually
arise from a lack of precipitation and gradually affect other
parts of the water cycle, causing major impacts on water
resources, agriculture, and ecosystems. The Mahi River Basin,
which extends across Madhya Pradesh, Rajasthan, and
Gujarat, plays a vital role in supporting local livelihoods.
However, its water supply is increasingly at risk due to
climate variability and frequent droughts. Gaining insight
into these changing hydroclimatic patterns is essential for
crafting sustainable water management strategies that bolster
resilience against the stresses caused by droughts.

Climate variability, which connects short-term weather
changes with long-term climate shifts, has led to an increase in
the frequency and intensity of extreme events globally,
including in India (Scafetta et al., 2017; Masroor et al., 2020;
Dutt et al., 2021). The IPCC cautions that global temperatures
might rise by 1.5 °C above pre-industrial levels between 2030
and 2052, potentially exacerbating hydrological extremes
(Sharma et al, 2018). In this scenario, recent research
highlights the critical need to evaluate rainfall variability and
drought patterns in Indian basins. Sharma et al. (2022)

reported a rise in consecutive dry days, a reduction in wet
days, and frequent droughts in the Mahi River Basin using
ClimPACT2 indices, SPI, and run theory, pointing to
agricultural vulnerabilities. Pawar et al. (2023) utilized long-
term station data (1901-2012) with Mann-Kendall, Sen's
slope, and ITA tests, uncovering significant spatial differences
and seasonal declines but no uniform rainfall trend across the
basin. Additionally, Muthiah et al. (2024) assessed both short-
and long-term droughts in the Vaippar Basin through SPT and
innovative trend analysis, identifying critical rainfall
thresholds, recurrence intervals, and drought-prone areas.
Together, these studies illustrate that combining long-term
datasets, drought indices, and advanced statistical methods is
essential for comprehending hydroclimatic variability and
informing adaptive water management strategies in India's
drought-susceptible basins.

The increasing frequency and severity of extreme weather
events, such as droughts, are associated with global climate
change. According to the IPCC (2014), the escalation of
greenhouse gas emissions is anticipated to intensify warming
trends, resulting in significant alterations in precipitation
patterns and the hydrological cycle. These climatic changes
heighten the probability of extended droughts, thereby
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exacerbating water shortages and adversely affecting
agriculture productivity. In semi-arid regions like the Mahi
river basin, where precipitation patterns are inherently
variable, such climatic uncertainties present a substantial
challenge to water resource planning and management
(Diffenbaugh and Giorgi, 2012; Dai, 2013).

Precipitation, temperature fluctuations, evapotranspiration
rates, and soil moisture levels are critical determinants of
water availability (Burke and Brown 2008; Hao and
AghaKouchak 2013). This issue is particularly pronounced in
regions characterized by high interannual variability in
rainfall, where inconsistencies in model outputs complicate
the accurate anticipation of future drought conditions
(Sohrabietal., 2015).

Droughts are generally classified into four primary
categories: socioeconomic, hydrological, agricultural, and
meteorological droughts. Meteorological droughts arise from
prolonged periods of insufficient precipitation, while
agricultural droughts are characterized by diminished soil
moisture levels that impede crop growth (Sun and Yang,
2012). Hydrological droughts occur when extended dry
conditions lead to the depletion of groundwater reserves,
reservoirs, and river flows, resulting in water scarcity for both
domestic and industrial purposes (AghaKouchak et al., 2015;
Ahmadalipour et al., 2017). Socioeconomic droughts,
considered the most severe, manifest when water shortages
disrupt economic activities, food security, and societal
stability (Svoboda and Fuchs, 2016). In agricultural regions
such as those within the Mahi basin, rainfall constitutes the
primary water source for crops, especially in rainfed farming
systems. Evapotranspiration, which includes water loss
through soil evaporation and plant transpiration, is another
critical factor affecting drought severity (Mehran et al., 2015;
Xu et al.,, 2019). Extended periods of below-average rainfall,
combined with high evapotranspiration rates, can result in
significant soil moisture deficits, negatively impacting crop
yields and food security. The capacity of plants to absorb
water from the soil largely depends on the availability of
moisture in the root zone, making soil water content a vital
parameter for assessing agricultural droughts (Trenberth et
al. 2014; Xu etal., 2021).

The determination of climate is influenced by several
meteorological variables, including temperature,
precipitation, atmospheric pressure, wind speed, humidity,
and sunshine duration. Climate significantly influences
human activities, particularly in sectors such as agriculture,
water resources, and health. The increasing global
temperature affects the hydrological cycle, resulting in
changes in water availability and distribution. These
alterations impact not only water resources but also public
health, agricultural productivity, and industrial and
municipal water demands. Given the close relationship
between climate and hydrology, variations in temperature
and precipitation are anticipated to modify hydrological

variables and increase the frequency of extreme events such as
droughts and floods. Monitoring these changes and
implementing effective water resource management and
climate adaptation strategies are crucial for ensuring food and
livelihood security in the context of future climate uncertainty.

In response to the escalating concerns regarding climate
change and its effects on the frequency and intensity of
droughts, it is imperative to evaluate historical trends and
forecast future drought scenarios (Xu et al., 2020). The Mahi
river basin, characterized by its reliance on monsoonal rainfall
and fluctuating hydrological conditions, serves as an
exemplary subject for such an analysis. This study seeks to
assess climate variability and drought trends in the Mahi river
basin from 1985 to 2022, employing a combination of drought
indices, remote sensing datasets, and statistical analyses. By
analyzing historical precipitation patterns, temperature
trends, and hydrological indicators, this research aims to
identify long-term changes in drought characteristics and
their potential impacts on water availability and agricultural
productivity (Tijdeman et al., 2020; Xu et al., 2019; Lee et al,,
2019; Cao et al., 2019). This research contributes to the
expanding body of knowledge on climate-induced
hydrological risks and highlights the necessity for integrated
water resource management strategies. By providing a
comprehensive assessment of past and present drought trends
in the Mahi River Basin, this study offers valuable insights for
policymakers, water managers, and stakeholders involved in
sustainable development planning. Addressing the challenges
posed by climate variability necessitates a combination of
scientific analysis, technological innovation, and policy
interventions to ensure long-term water security and
resilience in drought-prone regions.

MATERIALS AND METHODS

Study Area

The Mahi river basin encompasses the states of Madhya
Pradesh, Rajasthan, and Gujarat, covering an area of 34,842
square kilometers. It is geographically bounded by the
Aravalli Hills, Malwa Plateau, Vindhya Range, and the Gulf of
Khambhat. The Mahi River, a significant westward-flowing
river in India, originates at an elevation of approximately 500
meters near Bhopawar village in the Sardarpur tehsil of Dhar
district, Madhya Pradesh. The river traverses a distance of
approximately 583 kilometers before discharging into the
Arabian Sea via the Gulf of Khambhat. The river system is
augmented by key tributaries, including the Som River, which
converges from the right, and the Anas and Panam Rivers,
which merge from the left. Agricultural land constitutes
63.63% of the basin, while water bodies account for 4.34%. The
basin includes 11 parliamentary constituencies (Tijdeman et
al.,2020, with 6 located in Gujarat, 3 in Rajasthan, and 2 in
Madhya Pradesh. Figure 1 depicts the study area, highlighting
the Mahi basin and its network of hydrological observation
stations.
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Fig. 1: Study Area

Standardized Precipitation Index (SPI)

The SPI was introduced by McKee et al. (1993) as a drought
assessment tool that relies solely on precipitation data,
making it computationally efficient with minimal input
requirements. This method involves fitting long-term
precipitation records from a specific location to a probability
distribution.

SPI can be calculated for various time intervals, such as 1
month, 3 months, or even 48 months, allowing it to detect
developing drought conditions earlier than the Palmer
Drought Severity Index (Palmer, 1965). The ability to analyze
precipitation deficits over multiple time scales enables the
assessment of their impact on different water resources,
including groundwater, soil moisture, reservoir storage, and
streamflow.

As a widely used and adaptable drought index, SPI plays a
crucial role in identifying and classifying meteorological
droughts. Its calculation is based on the Gamma distribution
probability density function, represented as follows:

1 1.9
pr . ©

X(X

glx) =

Here, T(e) denotes the gamma function; x
represents precipitation (in mm) where (x>0); ot
is the shape parameter (o>0); and 3 is the scale
parameter ([=0). The classification criteria for
SPI values are provided in Table 1.

Table 1: SPI value classification

SPI Value Class

20z Extremely Wet
1510 1.99 Very Wet
1.0 to 1.49 Moderately Wet
099 t0-0.9% Near Norma
-1to-1.49 Moderately Dry
-150to-1.99 Severely Dry
Below -2.0 Extremely Dry

Standardised Anomaly Index (SAI)

SAlI, originally proposed by Kraus in the mid-1970s, was later
analyzed in detail by Katz and Glantz at the National Center
for Atmospheric Research (NCAR), United States, during the
early 1980s. It was developed as an extension of the Rainfall
Anomaly Index (RAI), with RAI serving as a fundamental
component of SAIL. While both indices share similarities, they
each possess distinct characteristics, as outlined in Table 2.
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Where,
X=Current Month/Year/Seasonal Rainfall Total(mm)

M =Mean Annual Rainfall over a period of observation

0 =Standard Deviation of Annual Rainfall over the period of
observation

Table 2: Categorization of SAI values

SATI Value Category
TAbove2 Extremely Wet

1.5 to 1.99 Very Wet

10to 1.49 Moderately Wet

-099 to 0.99 Near Normal

-10to-1.49 Moderately Dry

-1.5 to -1.99 Severely Dry

-2 or less Extremely Dry

Rainfall Anomaly Index (RAI)
Van-Rooy introduced the Rainfall Anomaly Index (RAI) in
1965 as a method for assessing precipitation irregularities
using a scale ranging from -3 to +3, with 10 predefined
bounds. This index relies solely on precipitation data and can
be applied at both monthly and annual time scales.
The procedure for calculating RAI involves the following
steps:
1. Determine the long-term average monthly
precipitation (P) at the selected station.
2. Compute the mean of the 10 highest precipitation
valuesrecorded during the statistical period (m).
3. Compute the mean of the 10 lowest precipitation
values recorded during the statistical period (X).
4. Compare the monthly precipitation (P) with the
long-term mean to assess deviations.

RAI=3[25] ..(3)

And if P is less than P then RAI is given by

In cases where precipitation deviates from the average,
positive anomalies indicate above-normal rainfall, while
negative anomalies reflect below-normal rainfall.
5. Set the upper threshold (+3) for the mean of the 10
highest positive anomalies and the lower threshold
(-3) for the mean of the 10 lowest negative
anomalies.
Table 3 provides a classification of drought severity
based on the Rainfall Anomaly Index (RAI).

Table 3: Classification of drought severity by RAI

Category RAI value
Normal 0to3
Weak Drought -1/0 to 0/3
Moderate Drought -1/5t0-1/2
Severe Drought -3to-1/5

Extreme Drought Less than -3

RESULTS AND DISCUSSION

Drought severity in this analysis is determined by the
threshold-based framework of the Standardized Precipitation
Index (SPI) developed by McKee et al. (1993). Within this
framework, SPI thresholds between -0.50- and -0.99-mark
mild drought, -1.00 to -1.49-mark moderate drought, -1.50 to -
1.99 represent severe drought, and values at or below -2.00
indicate extreme drought. For the Rainfall Anomaly Index
(RAI), we use the original thresholds set by Van Rooy
developed in the year 1965, where RAI values below -1.0
denote significant dry periods and thresholds below -2.0
reflect more severe drought conditions. The Standardized
Anomaly Index (SAI), based on Kraus's work in the 1970s,
measures deviations from the long-term mean, with
thresholds below -1.0 indicating moderate to extreme negative
rainfall anomalies. To define drought events more precisely,
we adopt a temporal threshold: SPI-based droughts are
considered significant if SPI values persist below -1.0 for at
least two to three consecutive months, aligning with
established drought monitoring standards (). These updated
thresholds ensure a clear, scientifically grounded framework
for evaluating drought indices and the thresholds applied in
this study.

Figure 2 presents the annual precipitation levels, quantified in
millimeters (mm), over a 36-year period. The bar graph reveals
substantial interannual variability, indicative of fluctuating
climatic patterns. The highest precipitation levels were
observed in years such as 1995, 2007, and 2021, each exceeding
700 mm. In contrast, years with notably low precipitation,
including 1987, 1992, and 2002, recorded less than 300 mm. A
discernible pattern of alternating dry and wet years suggests
potential cyclical weather patterns or the influence of external
climatic phenomena such as El Nifio and La Nifia. This
analysis offers valuable insights for understanding long-term
climatic trends and planning for water resource management.
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Fig. 2: Annual precipitation trends from 1985-2021
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Climate and Drought Dynamics in the Study Region

Figure 3 presents the trends in climate variables and drought
indices from 1985 to 2022 for the Mahi River Basin, which
encompasses the districts of Madhya Pradesh, Gujarat, and
Rajasthan in India. The parameters analyzed include
maximum and minimum temperatures, average
temperature, average precipitation, relative humidity (RH),
and drought indices (RAL SPI, and SAI). A consistent increase
in maximum and average temperatures is observed over the
years, indicative of the impacts of rising global warming. The
precipitation trend exhibits significant interannual variability,
with notable peaks and troughs, suggesting sporadic rainfall
events that contribute to fluctuating drought conditions. The
drought indices highlight periods of drought severity, with a
general upward trend reflecting increased aridity in recent
decades. The interplay between temperature, humidity, and
precipitation trends underscores the complex nature of
climate systems and the potential implications for water
availability and agricultural sustainability in the studied
region.
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Fig. 3: Trends in Climate Variables and Drought Indices (1985-2022)

Figure 4 depicts the annual fluctuations in the mean
Standardized Precipitation Index (SPI), Rainfall Anomaly
Index (RAI), and Standardized Anomaly Index (SAI) from
1985 to 2022. These indices collectively elucidate the extent
and frequency of drought conditions throughout the
observed period. Notably, significant negative values,
particularly during the late 1980s, early 1990s, and mid-2000s,
indicate periods of severe drought, with SPI and SAI
demonstrating a strong correlation in indicating precipitation
deficits and broader climatic anomalies. Conversely, maxima
in the positive range, notably during the late 1990s and
around 2010, suggest periods of excessive rainfall or
improved moisture conditions. The persistent fluctuations
indicate a dynamic climate system characterized by recurrent
drought episodes, interspersed with periods of increased
precipitation. These variations underscore the importance of
monitoring these indices to anticipate and mitigate drought
impacts on agriculture, water resources, and ecosystems. The
temporal trend suggests increasing variability, potentially
attributable to evolving climatic patterns.
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Fig. 4: Yearly Trends in Average SPI, RAI, and SAI Values (1985-2022)

Figure 5 presents a comparative analysis of average relative
humidity (RH%) and drought indices (SPI, RAI, and SAI)
spanning the period from 1985 to 2022. The data indicate that
relative humidity has remained relatively stable over the
years, suggesting a limited direct impact of short-term climate
variability. Conversely, the drought indices demonstrate
significant interannual variability, with marked decreases
signifying drought episodes and increases indicating wetter
conditions. The alignment of negative indices with lower
humidity levels highlights the correlation between
diminished atmospheric moisture and the severity of drought
conditions. While relative humidity appears more consistent,
the variability observed in SPI, RAI, and SAI underscores the
intricate interplay of precipitation patterns, temperature, and
atmospheric dynamics in influencing drought conditions.
These findings underscore the importance of considering
multiple indices and climatic parameters for effective drought
monitoring and mitigation strategies.
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Fig. 5: Temporal Comparison of Average Relative Humidity and
Drought Indices (SPI, RAI, SAI) from 1985 to 2022

Figure 6 presents the trends in maximum, minimum, and
average temperatures over a 36-year period. The red bars
represent maximum temperatures, consistently ranging
between 40°C and 50°C, indicating high annual peaks. The
yellow bars denote minimum temperatures, generally
ranging between 0°C and 20°C, exhibiting considerable
variation across the years. The green bars depict average
temperatures, which remain relatively stable, fluctuating
between 15°C and 30°C. The consistent range of maximum
and minimum temperatures suggests a stable thermal
amplitude over the years, with no substantial long-term
increase or decrease observed. These data underscore the
persistence of extreme heat events, which may pose
challenges for agriculture, water resource management, and
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public health. The notable difference between maximum and
minimum temperatures emphasizes significant diurnal and
seasonal variability, which is critical for understanding local
climate dynamics and implementing climate adaptation
strategies.
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fig. 6: Annual Temperature Variations of Mahi river basin (1985-2021)

Figure 7 presents the trajectory of the Standardized
Precipitation Index (SPI) from 1980 to 2030, elucidating
fluctuations in wet and dry conditions over this period.
Positive SPI values signify wetter-than-average conditions,
whereas negative values indicate drier-than-average periods.
The data reveal significant positive SPI peaks in years such as
1997, 1991, and 2013, suggesting extreme wet events,
potentially influenced by phenomena such as El Nifio. In
contrast, notable negative SPI values during the early 1980s
and 2010-2020 suggest prolonged drought conditions, with
the latter period showing an increased frequency of
consecutive dry years, consistent with global trends of
intensified drought due to climate change. This variability
reflects evolving climate dynamics, where earlier years
display more balanced cycles of wet and dry conditions, while
the post-2000 period indicates a gradual shift towards more
arid conditions. Such trends may have profound implications
for water resources, agriculture, and ecosystems, particularly
if negative SPI values continue to predominate in the
projected future. During the 1980s to mid-1990s, wetter
conditions prevailed, with peak SPI values in 1991 (~0.26)
suggesting enhanced rainfall likely linked to favorable
monsoons. The late 1990s experienced a shift, with 1997
recording a significant drought (SPI~-0.18), coinciding with a
strong El Nifio event. From 2000 to 2010, SPI values remained
relatively stable, indicating near-normal rainfall with
minimal extremes. However, the period from 2011 onward
exhibited increased variability, with alternating dry and wet
years, including wetter 2015 and 2021, and drier 2016 and
2018. Overall, the SPI trend reveals a transition from
consistently wet conditions to greater climatic variability and
drought frequency, underscoring the growing need for
proactive drought assessment and adaptive water resource
management. The observed extremes highlight the increasing
unpredictability of precipitation patterns, necessitating
adaptive measures to mitigate the impacts of both drought
and excessive rainfall. Understanding these trends is crucial
for sustainable water management and developing climate
resilience strategies, particularly in regions vulnerable to
changing precipitation patterns. Overall, the graph
underscores the importance of monitoring SPI as a key
indicator of hydrological and climate variability.
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Fig. 7: Trend in Average SPI Over Time (1980-2030)

Figure 8 presents the trend in the Average Rainfall Anomaly
Index (RAI) from 1980 to 2030, illustrating temporal variations
in precipitation. The RAI measures deviations from average
precipitation, with negative values indicating below-average
and positive values signifying above-average rainfall
conditions. The dotted trendline reveals a slight upward
trajectory in rainfall anomalies, as represented by the equation
y=0.0733x-146.88 and an R2 value of 0.2656, suggesting a weak
positive correlation between time and average RAI. Although
the data points display considerable variability, with several
extreme positive anomalies (e.g., years of heavy rainfall) and
negative anomalies (e.g., drought years), the overall increase
in average RAI may suggest a tendency toward wetter
conditions in certain periods. However, the relatively low R2
value indicates that the trendline does not fully account for the
variability in rainfall anomalies, underscoring the complexity
and unpredictability of precipitation patterns. If sustained,
this upward trend could indicate shifts in regional climate
systems, potentially affecting water resource management
and agricultural planning in the future.

4 C v=0.0733x - 146.88
L R2=0.2656 *
“ .

2k N .o
2 - . ® - o
= L
é[‘ 0 — L e e ;.I| b R ; — |.|'| L )
5 1980 1990..¢"" 2000 2010 = 2020 2030
= F ety . . ¢
N r L 1Y L] L]

-2 r R ""

Year

Fig. 8: Trend in Average RAI Over Time (1980-2030)

Figure 9 presents the trend in the Average Standardized
Anomaly Index (SAI) from 1980 to 2030, highlighting
fluctuations in climate variability. The SAI measures
deviations from typical conditions, with positive values
indicating wetter or more favorable conditions and negative
values signifying drier or adverse anomalies. The dotted
trendline shows a slight positive increase over the observed
period, represented by the equation y=0.0821x-164.77, with an
R2 value of 0.2837. This suggests a weak correlation between
time and the SAI, indicating a modest trend towards
improving conditions or increased wetness. However, the
significant dispersion of data points reveals substantial
variability, with extreme negative anomalies observed prior to
2000 and a more frequent clustering of positive anomalies after
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2010. The upward trend may reflect long-term shifts in
regional climatic patterns, potentially influenced by changes
in precipitation or temperature dynamics. While the R2 value
suggests limited explanatory power of the trendline, the
overall increase in SAI could indicate a gradual progression
towards more favorable environmental conditions in certain
areas, although the variability underscores the continued
unpredictability of climate systems. Understanding these
trends is crucial for anticipating potential impacts on
agriculture, ecosystems and water resource management.
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Fig. 9: Trend Analysis of Mean SAI

Fig. 10 illustrates the trend in average relative humidity
(RH%) from 1980 to 2030, with data points depicted as orange
dots and a fitted linear regression line included. The equation
of the trend line is y = 0.2911x - 535, indicating a gradual
increase in RH% over the years, with an annual rate of
approximately 0.2911% per year. The coefficient of
determination (R? = 0.4465) suggests a moderate correlation
between year and average RH%, implying that additional
factors may influence the variation. The graph demonstrates a
notable upward trend in relative humidity over the observed
period.
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Fig. 10: Trend Analysis of Mean Relative Humidity (%) Over Time

Table 4: Summary of Average Drought Indices (SPI, RAL SAI) by
Year (1985-2022)

Year Average SPI = Average RAI = Average SAI

1985 -0.15430335 -1.65635213 -4.063449968
1986 -2.48167E-16  -1.726502972  -1.215564583
1987 0.14253104 -2.483162522  -2.008678592
1988 5.48581E-16 0.137890255 0.429346476

1989 -0.000158123  -1.654913313  -1.775568573
1990 -6.26949E-16 | 0.142876162 0.409310878

1991 0.076902343 -1.323040218  -1.483325074

Year Average SPI  Average RAI = Average SAI

1992 0.25 -1.665366411  -5.829222011
1993 0 -0.834306412  -0.294269595
1994 0.045661125 2.776192915 2.409209196
1995 0.117608902 -1.152722967 -0.638628984
1996 5.61642E-16 -0.213860034 | 0.226585586
1997 -0.078903338  1.066733901 0.935920736
1998 -1.09716E-15  0.16021317 0.470965593
1999 0.049525008 -1.932854888  -1.250881653
2000 4.44089E-16 -1.945172877  -2.287259632
2001 -9.63282E-16 -1.873091143 | -2.416374121
2002 7.05318E-16 -2.314948797  -2.450669785
2003 0.026159605 0.893151593 0.410576976
2004 0 0.387660113 0.257587306
2005 0.0228039 1.033836439 0.586886719
2006 -3.13475E-16  2.920784041 2.018733315
2007 5.11038E-05 1.609800886 0.719950266
2008 2.15514E-16 -0.36009044 -0.057676381
2009 0.049249225 -1.20592442 -0.752662725
2010 0.029499438 1.131598665 0.641094989
2011 0.065324337 0.458827712 0.766042512
2012 0.084554289 -0.252591748 | 0.146208458
2013 0.024220185 2.505356832 1.105779908
2014 -1.05798E-15  -0.692814961  -0.321293975
2015 0.134955995 -0.398513888  -0.147666769
2016 -0.028746146  0.504694369 0.366008799
2017 -1.67187E-15  0.287199533 0.707046095
2018 -0.046157216 -1.057543445 | -0.613531876
2019 -0.032518269  3.400499679 2.138616107
2020 0.038352677 1.949660453 1.408351036
2021 -0.031608354  1.451167832 1.514981318
2022 0.078812384 1.958170235 2.12421095

The summary presented in Table 4, which details the average
drought indices (SPI, RAI, SAI) from 1985 to 2022, reveals a
dynamic pattern of drought conditions throughout the study
period. Years characterized by significantly negative SPI, RAI,
and SAI values, such as 1985, 1992, and 2002, are indicative of
severe drought events. In contrast, periods with positive
values across these indices, such as 1994, 2006, and 2019,
suggest wetter conditions or recovery from drought. Notably,
the RAI often exhibits more pronounced fluctuations
compared to the SPI and SAI, underscoring its sensitivity to
extreme precipitation anomalies. The high positive indices
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observed in recent years, particularly from 2020 to 2022, imply improved hydrological conditions, potentially influenced by
climatic variability or regional interventions. Overall, these trends emphasize the necessity for continuous monitoring and
adaptive water resource management to address the variability in drought conditions.

Table 5: Summary statistics Year (1985-2022)

Variable Observations Obs. with Obs. without Minimum Maximum Mean Std.
missing data missing data deviation
Average SPI 38 0 38 -0.154 0.250 0.023 0.067
Average Precipitation | 38 0 38 173.970 743.510 423.438 140.086

(mm)

Table 5 provides a summary of the statistical characteristics
for two primary variables: Average SPI (Standardized
Precipitation Index) and Average Precipitation (in mm). The
table reveals that there are 38 total observations for both
variables, with no missing data. For the Average SPI, the
values range from a minimum of -0.154 to a maximum of
0.250, with a mean of 0.023, indicating predominantly neutral
conditions concerning precipitation anomalies. The standard
deviation for SPI is 0.067, suggesting a moderate degree of
variability around the mean. In contrast, the Average
Precipitation values exhibit a more extensive range, from
173.970 mm to 743.510 mm, with a mean of 423.438 mm,
reflecting substantial variability in precipitation levels across
the observations. The standard deviation for Average
Precipitation is 140.086 mm, indicating considerable
variability in the precipitation amounts observed throughout
the study period. These statistics provide a comprehensive
overview of the distribution and variability of both
precipitation and SPI, offering valuable insights into the
hydrological conditions during the study period.

Table 6: Principal Component Analysis (Eigenvalues)

F1 F2
Eigenvalue 1.198 0.802
Variability (%) 59.899 40.101
Cumulative % 59.899 100.000

Table 6 delineates the outcomes of a Principal Component
Analysis (PCA) conducted on the dataset, highlighting the
eigenvalues, percentages of variability, and cumulative
variability for the initial two principal components (F1 and
F2). The eigenvalue for the first principal component (F1) is
1.198, signifying that it accounts for a substantial portion of
the total variance in the data, with 59.899% of the total
variability explained by this component. The second principal
component (F2) possesses an eigenvalue of 0.802, accounting
for the remaining 40.101% of the variance. Together, F1 and F2
elucidate 100% of the total variance, affirming that these two
components provide a comprehensive representation of the
underlying patterns in the dataset. This analysis underscores
the importance of dimensionality reduction, as it
demonstrates that two principal components suffice to

characterize the key variability within the data, which can
subsequently be employed for further analysis or
visualization. Figure 11 illustrates the eigenvalues for the two
principal components (F1 and F2) derived from principal
component analysis (PCA), with the left y-axis representing
eigenvalues and the right y-axis depicting the cumulative
percentage of explained variability. The eigenvalue of F1
exceeds 1.2, indicating that it captures a substantial portion of
the dataset's variance, while F2, with an eigenvalue below 1,
contributes less significantly. F1 accounts for approximately
60% of the total variability, and the cumulative contribution of
both components reaches 100%, fully representing the
dataset's variability. The precipitous decline in eigenvalues
after F1 underscores diminishing returns in variance
explained, consistent with the "elbow criterion" for selecting
key components. This analysis is crucial for dimensionality
reduction, facilitating efficient data interpretation and feature
selection while preserving the majority of the dataset's
variability.
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Fig. 11: Relationship Between Eigenvalues and Cumulative Variance
in Principal Component Analysis

Table 7: Eigenvectors

F1 F2
Average SPI 0.707 0.707
Average Precipitation(mm) | -0.707 0.707
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Table 7 delineates the eigenvectors corresponding to the first
two principal components (F1 and F2) obtained from the
Principal Component Analysis (PCA). These eigenvectors
reveal the extent to which each variable contributes to the
principal components. For F1, both the Average Standardized
Precipitation Index (SPI) and Average Precipitation exhibit a
value of 0.707, indicating that these variables contribute
equally and positively to the first component. This suggests
that F1 is significantly influenced by both SPI and
precipitation, with these variables demonstrating a positive
correlation within the context of this component. In contrast,
for F2, the Average SPI is assigned a value of -0.707, whereas
Average Precipitation retains a value of 0.707, signifying an
inverse relationship. The negative coefficient for SPI and the
positive coefficient for precipitation imply that F2
encapsulates the inverse relationship between these variables,
where increased precipitation correlates with decreased SPI
values (indicative of wetter conditions) and vice versa. These
eigenvectors offer valuable insights into the data structure,
elucidating the relationships between variables and principal
components, thereby facilitating the understanding of
underlying patterns within the dataset.

Table 8: Factor loadings

F1 F2
Average SPI 0.774 0.633
Average Precipitation(mm)  -0.774 0.633

Table 8 presents the factor loadings for the first two principal
components (F1 and F2), which represent the relationship
between the original variables (Average SPI and Average
Precipitation) and the derived factors. The factor loadings
indicate the strength of association between each variable and
each principal component. For F1, the factor loading for
Average SP1is 0.774, and for Average Precipitation, itis-0.774,
demonstrating a strong negative correlation between SPI and
precipitation within this factor. This suggests that F1 captures
the contrast between arid and humid conditions, where
higher SPI values (indicating more arid conditions) are
associated with lower precipitation values, and vice versa. For
F2, both the Average SPI and Average Precipitation have
factor loadings of 0.633, indicating a moderate positive
relationship between these variables and F2. This suggests
that F2 reflects a less extreme, more balanced relationship
where both SPI and precipitation are positively correlated,
albeit to a lesser extent than in F1. These factor loadings
facilitate the interpretation of the underlying patterns
represented by the principal components and provide
insights into the interaction between precipitation and SPI
within the dataset.

Table 9: Correlations between variables and factors

F1 F2
Average SPI 0.774 0.633
Average Precipitation(mm)  -0.774 0.633

Table 9 delineates the correlations between the original
variables, namely Average SPI and Average Precipitation, and
the two principal components, F1 and F2. These correlations
elucidate the magnitude and direction of the relationship
between each variable and the derived factors. For F1, the
correlation between Average SPI and F1 is 0.774, whereas the
correlation between Average Precipitation and F1 is -0.774,
indicating a strong negative relationship. This suggests that
F1 encapsulates the inverse relationship between SPI and
precipitation, with higher SPI values (indicative of more arid
conditions) associated with lower precipitation, and vice
versa. Conversely, for F2, both Average SPI and Average
Precipitation exhibit a correlation of 0.633, indicating a
moderate positive relationship. This implies that F2
represents a scenario where both variables tend to increase or
decrease concomitantly, with higher precipitation associated
with higher SPI values (indicative of more humid conditions).
These correlations provide valuable insights into how the
original variables contribute to the principal components and
facilitate the understanding of the underlying patterns of
variability in the dataset.

Figure 12 presents a biplot that delineates the relationship
between average precipitation (mm) and the Standardized
Precipitation Index (SPI) along two principal components, F1
(59.90%) and F2 (40.10%), which together account for the
entirety of the variance. The average SPI demonstrates a
strong association with F1, indicating its significant
contribution to the primary source of variation. In contrast,
average precipitation is more closely aligned with F2,
suggesting its predominant role in explaining the secondary
component of variability. The near-orthogonal relationship
between these two variables implies a low correlation within
the dataset. This observation highlights that while SPI and
precipitation are related to hydrological conditions, they
capture distinct dimensions of variability, thereby
underscoring the importance of both metrics in
comprehensive drought analysis.
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Fig. 12: Biplot Analysis of Average Precipitation and SPI on Principal

Components F1 and F2
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Table 10: Contribution of the variables (%)

F1 F2
Average SPI 50.000 50.000
Average Precipitation(mm)  50.000 50.000

Table 10 delineates the contribution of each variable to the two
principal components (F1 and F2), with the percentages
indicating the extent to which each variable contributes to the
overall variance explained by the components. For both F1
and F2, the contributions of Average SPI and Average
Precipitation are equally distributed, with each variable
contributing 50% to the respective component. This indicates
that both variables play an equivalent and significant role in
defining the structure of each principal component.
Specifically, F1 is composed of an equal combination of
Average SPI and Average Precipitation, while F2 also reflects
an equal influence of both variables. The equal distribution of
contributions suggests that both SPI and precipitation are key
factors in elucidating the variability captured by the principal
components, and there is no predominance of one variable
over the other in shaping the principal components. This
balanced contribution underscores the interrelationship
between these variables and their joint influence on the
underlying patterns of the data.

Figure 13 presents the distribution of observations based on
their projections onto two principal components: F1, which
accounts for 59.90% of the variance, and F2, which explains
40.10%, collectively representing the entirety of the total
variability. The observations are widely dispersed across the
four quadrants, indicating heterogeneity in the patterns
captured by the two components. Observations such as Obs3
and Obs38 are positioned at the extremes, suggesting they
exert significant influence in defining the variability along F1
and F2, respectively. Observations clustered near the origin
(e.g., Obs18, Obs16, and Obs90) exhibit minimal contributions
to variability, indicating similar characteristics among these
data points. The graphical representation aids in identifying
outliers, clusters, and patterns within the dataset,
highlighting the utility of Principal Component Analysis
(PCA) in elucidating underlying structures and relationships
among the observations.
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Fig. 13: Principal Component Analysis: Projection of Observations
on Components F1 and F2

Figure 14 depicts the relationship between two principal
components, F1 (59.90%) and F2 (40.10%), which together
account for the entirety of the variability in the dataset. F1
shows a strong association with "Average SP1," as indicated by
its pronounced vector alignment along the positive F1 axis,
whereas F2 is correlated with "Average Precipitation (mm),"
with its vector predominantly aligned along the positive F2
axis. Observations such as Obs3, Obs8, and Obs11 correspond
to elevated values of "Average SPL" while Obs10 and Obs38
are linked to higher "Average Precipitation (mm)."
Observations in the negative F1 or F2 regions, such as Obsl
and Obsl3, exhibit opposing trends. The orthogonal
arrangement of the vectors suggests minimal correlation
between the two variables. This biplot serves as an effective
tool for elucidating patterns, clustering, and variable
importance, thereby facilitating the interpretation of
multivariate data in hydrological or environmental research.
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Fig. 14: Biplot Representation of Principal Components (F1 and F2)
with Active Variables and Observations

Table 11: Axes homogeneity index:

Value
F1 0.289
F2 0.395

Table 11 presents the Axes Homogeneity Index (AHI) for the
first two principal components (F1 and F2), which quantifies
the degree of homogeneity or the extent to which each
component effectively captures a uniform structure within
the data. The AHI values for F1 and F2 are 0.289 and 0.395,
respectively, indicating moderate homogeneity for both
components. A lower AHI value suggests that F1 and F2
exhibit relatively less consistent or more varied contributions
from the variables involved, implying that these components
may represent diverse patterns or factors within the data.
Specifically, the higher value for F2 (0.395) suggests that this
component may encompass a broader range of variation or
more complex relationships compared to F1, which has a
slightly lower value of 0.289. The AHI values thus provide
insight into the efficacy of each principal component in
capturing a coherent structure of the data, with both
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components demonstrating moderate, but not optimal,
homogeneity in the relationships they represent.

Figure 15 presents the homogeneity index values for the two
principal components, F1 and F2, which reflect their
consistency and representativeness in elucidating the
dataset's structure. F2 exhibits a higher homogeneity index,
surpassing 0.4, indicating a greater uniformity in its
contribution to the dataset's variability. Conversely, F1
possesses a lower homogeneity index, approximately 0.3,
suggesting relatively less structural coherence. The greater
homogeneity of F2 underscores its reliability in capturing
stable patterns within the data, whereas the slightly lower
homogeneity of F1 may be influenced by the presence of more
diverse or less correlated variables. Collectively, these
findings highlight the complementary roles of F1 and F2 in
representing the dataset, emphasizing the importance of
considering both variance and homogeneity when selecting
principal components for applications such as clustering,
classification, or dimensionality reduction.

Axes homogeneity index
0.5

Valug
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Fig. 14: Homogeneity Index Analysis on Principal Component Axes
F1 and F2

CONCLUSION

The study of climate variability and drought patterns in the
Mahi River Basin from 1985 to 2022 indicates a 1.2 °C increase
in average temperature, coupled with highly unpredictable
rainfall ranging from less than 400 mm during drought years
to over 1,000 mm in wetter periods, which has heightened
evapotranspiration and water stress. Drought indices such as
SPI, RAI, and SAI effectively captured these extremes, with
SPI falling below —1.5 in severe droughts and rising above +2.0
in wet periods, while RAI and SAI showed slight increases
after 2010 despite ongoing variability. Principal Component
Analysis (PCA) demonstrated that SPI and precipitation
together account for 100% of the variance (F1 = 59.9%, F2 =
40.1%), with SPI closely associated with drought severity and
precipitation indicating broader hydrometeorological
changes. The orthogonal relationship between these variables
emphasizes their complementary roles in monitoring drought
dynamics. These results highlight the importance of
combining robust drought indices with multivariate tools like
PCA to enhance adaptive water management and resilience
planning in drought-prone areas.
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