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ABSTRACT

INTRODUCTION

150

Climate variability and drought have emerged as critical concerns in semi-arid regions, 
where water resources are acutely sensitive to fluctuations in temperature and 
precipitation. The Mahi river basin in western India, encompassing Madhya Pradesh, 
Rajasthan, and Gujarat, has been subject to limited comprehensive long-term studies 
despite its susceptibility to climate-induced hydrological stress. This study seeks to 
evaluate long-term trends in climate variables and drought patterns in the Mahi river 
basin from 1985 to 2022. Utilizing historical climate data and key drought indices 
Standardized Precipitation Index (SPI), Rainfall Anomaly Index (RAI), and Standardized 
Anomaly Index (SAI) in conjunction with statistical tools such as Principal Component 
Analysis (PCA), we assess changes in temperature, precipitation, and drought severity. 
The results indicate a 1.2°C increase in average annual temperature and significant 
interannual variability in precipitation, contributing to more frequent and intense 
drought events. PCA results revealed that SPI and precipitation collectively account for 
100% of the variance in drought behavior, underscoring their critical role in drought 
monitoring. These findings underscore the necessity for adaptive water resource 
management strategies to enhance resilience in the face of increasing climate variability.

Keywords: Climate variability, Drought indices, Precipitation patterns, Principal 
component analysis, Water resource management

Droughts are temporary deviations that can occur in various 

climate zones, unlike the consistently dry conditions typical of 

regions with low rainfall. These extended dry spells usually 

arise from a lack of precipitation and gradually affect other 

parts of the water cycle, causing major impacts on water 

resources, agriculture, and ecosystems. The Mahi River Basin, 

which extends across Madhya Pradesh, Rajasthan, and 

Gujarat, plays a vital role in supporting local livelihoods. 

However, its water supply is increasingly at risk due to 

climate variability and frequent droughts. Gaining insight 

into these changing hydroclimatic patterns is essential for 

crafting sustainable water management strategies that bolster 

resilience against the stresses caused by droughts.

Climate variability, which connects short-term weather 

changes with long-term climate shifts, has led to an increase in 

the frequency and intensity of extreme events globally, 

including in India (Scafetta et al., 2017; Masroor et al., 2020; 

Dutt et al., 2021). The IPCC cautions that global temperatures 

might rise by 1.5 °C above pre-industrial levels between 2030 

and 2052, potentially exacerbating hydrological extremes 

(Sharma et al., 2018). In this scenario, recent research 

highlights the critical need to evaluate rainfall variability and 

drought patterns in Indian basins. Sharma et al. (2022) 

reported a rise in consecutive dry days, a reduction in wet 

days, and frequent droughts in the Mahi River Basin using 

ClimPACT2 indices, SPI, and run theory, pointing to 

agricultural vulnerabilities. Pawar et al. (2023) utilized long-

term station data (1901–2012) with Mann–Kendall, Sen's 

slope, and ITA tests, uncovering significant spatial differences 

and seasonal declines but no uniform rainfall trend across the 

basin. Additionally, Muthiah et al. (2024) assessed both short- 

and long-term droughts in the Vaippar Basin through SPI and 

innovative trend analysis, identifying critical rainfall 

thresholds, recurrence intervals, and drought-prone areas. 

Together, these studies illustrate that combining long-term 

datasets, drought indices, and advanced statistical methods is 

essential for comprehending hydroclimatic variability and 

informing adaptive water management strategies in India's 

drought-susceptible basins.

The increasing frequency and severity of extreme weather 

events, such as droughts, are associated with global climate 

change. According to the IPCC (2014), the escalation of 

greenhouse gas emissions is anticipated to intensify warming 

trends, resulting in significant alterations in precipitation 

patterns and the hydrological cycle. These climatic changes 

heighten the probability of extended droughts, thereby 
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exacerbating water shortages and adversely affecting 

agriculture productivity. In semi-arid regions like the Mahi 

river basin, where precipitation patterns are inherently 

variable, such climatic uncertainties present a substantial 

challenge to water resource planning and management 

(Diffenbaugh and Giorgi, 2012; Dai, 2013).

Precipitation, temperature fluctuations, evapotranspiration 

rates, and soil moisture levels are critical determinants of 

water availability (Burke and Brown 2008; Hao and 

AghaKouchak 2013). This issue is particularly pronounced in 

regions characterized by high interannual variability in 

rainfall, where inconsistencies in model outputs complicate 

the accurate anticipation of future drought conditions 

(Sohrabi et al., 2015). 

Droughts are generally classified into four primary 

categories: socioeconomic, hydrological, agricultural, and 

meteorological droughts. Meteorological droughts arise from 

prolonged periods of insufficient precipitation, while 

agricultural droughts are characterized by diminished soil 

moisture levels that impede crop growth (Sun and Yang, 

2012). Hydrological droughts occur when extended dry 

conditions lead to the depletion of groundwater reserves, 

reservoirs, and river flows, resulting in water scarcity for both 

domestic and industrial purposes (AghaKouchak et al., 2015; 

Ahmadalipour et al., 2017). Socioeconomic droughts, 

considered the most severe, manifest when water shortages 

disrupt economic activities, food security, and societal 

stability (Svoboda and Fuchs, 2016). In agricultural regions 

such as those within the Mahi basin, rainfall constitutes the 

primary water source for crops, especially in rainfed farming 

systems. Evapotranspiration, which includes water loss 

through soil evaporation and plant transpiration, is another 

critical factor affecting drought severity (Mehran et al., 2015; 

Xu et al., 2019). Extended periods of below-average rainfall, 

combined with high evapotranspiration rates, can result in 

significant soil moisture deficits, negatively impacting crop 

yields and food security. The capacity of plants to absorb 

water from the soil largely depends on the availability of 

moisture in the root zone, making soil water content a vital 

parameter for assessing agricultural droughts (Trenberth et 

al. 2014; Xu et al., 2021).

The determination of climate is influenced by several 

meteorological variables, including temperature, 

precipitation, atmospheric pressure, wind speed, humidity, 

and sunshine duration. Climate significantly influences 

human activities, particularly in sectors such as agriculture, 

water resources, and health. The increasing global 

temperature affects the hydrological cycle, resulting in 

changes in water availability and distribution. These 

alterations impact not only water resources but also public 

health, agricultural productivity, and industrial and 

municipal water demands. Given the close relationship 

between climate and hydrology, variations in temperature 

and precipitation are anticipated to modify hydrological 

variables and increase the frequency of extreme events such as 

droughts and floods. Monitoring these changes and 

implementing effective water resource management and 

climate adaptation strategies are crucial for ensuring food and 

livelihood security in the context of future climate uncertainty.

In response to the escalating concerns regarding climate 

change and its effects on the frequency and intensity of 

droughts, it is imperative to evaluate historical trends and 

forecast future drought scenarios (Xu et al., 2020). The Mahi 

river basin, characterized by its reliance on monsoonal rainfall 

and fluctuating hydrological conditions, serves as an 

exemplary subject for such an analysis. This study seeks to 

assess climate variability and drought trends in the Mahi river 

basin from 1985 to 2022, employing a combination of drought 

indices, remote sensing datasets, and statistical analyses. By 

analyzing historical precipitation patterns, temperature 

trends, and hydrological indicators, this research aims to 

identify long-term changes in drought characteristics and 

their potential impacts on water availability and agricultural 

productivity (Tijdeman et al., 2020; Xu et al., 2019; Lee et al., 

2019; Cao et al., 2019). This research contributes to the 

expanding body of knowledge on climate-induced 

hydrological risks and highlights the necessity for integrated 

water resource management strategies. By providing a 

comprehensive assessment of past and present drought trends 

in the Mahi River Basin, this study offers valuable insights for 

policymakers, water managers, and stakeholders involved in 

sustainable development planning. Addressing the challenges 

posed by climate variability necessitates a combination of 

scientific analysis, technological innovation, and policy 

interventions to ensure long-term water security and 

resilience in drought-prone regions.

MATERIALS AND METHODS

Study Area

The Mahi river basin encompasses the states of Madhya 

Pradesh, Rajasthan, and Gujarat, covering an area of 34,842 

square kilometers. It is geographically bounded by the 

Aravalli Hills, Malwa Plateau, Vindhya Range, and the Gulf of 

Khambhat. The Mahi River, a significant westward-flowing 

river in India, originates at an elevation of approximately 500 

meters near Bhopawar village in the Sardarpur tehsil of Dhar 

district, Madhya Pradesh. The river traverses a distance of 

approximately 583 kilometers before discharging into the 

Arabian Sea via the Gulf of Khambhat. The river system is 

augmented by key tributaries, including the Som River, which 

converges from the right, and the Anas and Panam Rivers, 

which merge from the left. Agricultural land constitutes 

63.63% of the basin, while water bodies account for 4.34%. The 

basin includes 11 parliamentary constituencies (Tijdeman et 

al.,2020, with 6 located in Gujarat, 3 in Rajasthan, and 2 in 

Madhya Pradesh. Figure 1 depicts the study area, highlighting 

the Mahi basin and its network of hydrological observation 

stations. 



September 2025 Kumar et al [Journal of AgriSearch, Vol.12, No.3]

152

Fig. 1: Study Area 

Standardized Precipitation Index (SPI) 

The SPI was introduced by McKee et al. (1993) as a drought 

assessment tool that relies solely on precipitation data, 

making it computationally efficient with minimal input 

requirements. This method involves fitting long-term 

precipitation records from a specific location to a probability 

distribution.

SPI can be calculated for various time intervals, such as 1 

month, 3 months, or even 48 months, allowing it to detect 

developing drought conditions earlier than the Palmer 

Drought Severity Index (Palmer, 1965). The ability to analyze 

precipitation deficits over multiple time scales enables the 

assessment of their impact on different water resources, 

including groundwater, soil moisture, reservoir storage, and 

streamflow.

As a widely used and adaptable drought index, SPI plays a 

crucial role in identifying and classifying meteorological 

droughts. Its calculation is based on the Gamma distribution 

probability density function, represented as follows:

Table 1: SPI value classification

Standardised Anomaly Index (SAI)

SAI, originally proposed by Kraus in the mid-1970s, was later 

analyzed in detail by Katz and Glantz at the National Center 

for Atmospheric Research (NCAR), United States, during the 

early 1980s. It was developed as an extension of the Rainfall 

Anomaly Index (RAI), with RAI serving as a fundamental 

component of SAI. While both indices share similarities, they 

each possess distinct characteristics, as outlined in Table 2.

........(1)
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Where,

X=Current Month/Year/Seasonal Rainfall Total(mm)

      =Mean Annual Rainfall over a period of observation

     =Standard Deviation of Annual Rainfall over the period of 

observation

Table 2: Categorization of SAI values

Rainfall Anomaly Index (RAI) 
Van-Rooy introduced the Rainfall Anomaly Index (RAI) in 
1965 as a method for assessing precipitation irregularities 
using a scale ranging from -3 to +3, with 10 predefined 
bounds. This index relies solely on precipitation data and can 
be applied at both monthly and annual time scales.
The procedure for calculating RAI involves the following 
steps:

1. Determine the long-term average monthly 
precipitation (P) at the selected station.

2. Compute the mean of the 10 highest precipitation 
values recorded during the statistical period (m).

3. Compute the mean of the 10 lowest precipitation 
values recorded during the statistical period (X).

4. Compare the monthly precipitation (P) with the 
long-term mean to assess deviations.

And if P is less than P then RAI is given by

In cases where precipitation deviates from the average, 

positive anomalies indicate above-normal rainfall, while 

negative anomalies reflect below-normal rainfall.

5. Set the upper threshold (+3) for the mean of the 10 

highest positive anomalies and the lower threshold 

(-3) for the mean of the 10 lowest negative 

anomalies.

Table 3 provides a classification of drought severity 

based on the Rainfall Anomaly Index (RAI).

Table 3: Classification of drought severity by RAI

RESULTS AND DISCUSSION
Drought severity in this analysis is determined by the 

threshold-based framework of the Standardized Precipitation 

Index (SPI) developed by McKee et al. (1993). Within this 

framework, SPI thresholds between -0.50- and -0.99-mark 

mild drought, -1.00 to -1.49-mark moderate drought, -1.50 to -

1.99 represent severe drought, and values at or below -2.00 

indicate extreme drought. For the Rainfall Anomaly Index 

(RAI), we use the original thresholds set by Van Rooy 

developed in the year 1965, where RAI values below -1.0 

denote significant dry periods and thresholds below -2.0 

reflect more severe drought conditions. The Standardized 

Anomaly Index (SAI), based on Kraus's work in the 1970s, 

measures deviations from the long-term mean, with 

thresholds below -1.0 indicating moderate to extreme negative 

rainfall anomalies. To define drought events more precisely, 

we adopt a temporal threshold: SPI-based droughts are 

considered significant if SPI values persist below -1.0 for at 

least two to three consecutive months, aligning with 

established drought monitoring standards (). These updated 

thresholds ensure a clear, scientifically grounded framework 

for evaluating drought indices and the thresholds applied in 

this study.

Figure 2 presents the annual precipitation levels, quantified in 

millimeters (mm), over a 36-year period. The bar graph reveals 

substantial interannual variability, indicative of fluctuating 

climatic patterns. The highest precipitation levels were 

observed in years such as 1995, 2007, and 2021, each exceeding 

700 mm. In contrast, years with notably low precipitation, 

including 1987, 1992, and 2002, recorded less than 300 mm. A 

discernible pattern of alternating dry and wet years suggests 

potential cyclical weather patterns or the influence of external 

climatic phenomena such as El Niño and La Niña. This 

analysis offers valuable insights for understanding long-term 

climatic trends and planning for water resource management.

Fig. 2: Annual precipitation trends from 1985-2021

.......(2)

........(3)

........(4)
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Climate and Drought Dynamics in the Study Region 
Figure 3 presents the trends in climate variables and drought 

indices from 1985 to 2022 for the Mahi River Basin, which 

encompasses the districts of Madhya Pradesh, Gujarat, and 

Rajasthan in India. The parameters analyzed include 

maximum and minimum temperatures,  average 

temperature, average precipitation, relative humidity (RH), 

and drought indices (RAI, SPI, and SAI). A consistent increase 

in maximum and average temperatures is observed over the 

years, indicative of the impacts of rising global warming. The 

precipitation trend exhibits significant interannual variability, 

with notable peaks and troughs, suggesting sporadic rainfall 

events that contribute to fluctuating drought conditions. The 

drought indices highlight periods of drought severity, with a 

general upward trend reflecting increased aridity in recent 

decades. The interplay between temperature, humidity, and 

precipitation trends underscores the complex nature of 

climate systems and the potential implications for water 

availability and agricultural sustainability in the studied 

region.

Fig. 3: Trends in Climate Variables and Drought Indices (1985–2022)

Figure 4 depicts the annual fluctuations in the mean 

Standardized Precipitation Index (SPI), Rainfall Anomaly 

Index (RAI), and Standardized Anomaly Index (SAI) from 

1985 to 2022. These indices collectively elucidate the extent 

and frequency of drought conditions throughout the 

observed period. Notably, significant negative values, 

particularly during the late 1980s, early 1990s, and mid-2000s, 

indicate periods of severe drought, with SPI and SAI 

demonstrating a strong correlation in indicating precipitation 

deficits and broader climatic anomalies. Conversely, maxima 

in the positive range, notably during the late 1990s and 

around 2010, suggest periods of excessive rainfall or 

improved moisture conditions. The persistent fluctuations 

indicate a dynamic climate system characterized by recurrent 

drought episodes, interspersed with periods of increased 

precipitation. These variations underscore the importance of 

monitoring these indices to anticipate and mitigate drought 

impacts on agriculture, water resources, and ecosystems. The 

temporal trend suggests increasing variability, potentially 

attributable to evolving climatic patterns.

Fig. 4: Yearly Trends in Average SPI, RAI, and SAI Values (1985–2022)

Figure 5 presents a comparative analysis of average relative 
humidity (RH%) and drought indices (SPI, RAI, and SAI) 
spanning the period from 1985 to 2022. The data indicate that 
relative humidity has remained relatively stable over the 
years, suggesting a limited direct impact of short-term climate 
variability. Conversely, the drought indices demonstrate 
significant interannual variability, with marked decreases 
signifying drought episodes and increases indicating wetter 
conditions. The alignment of negative indices with lower 
humidity levels highlights the correlation between 
diminished atmospheric moisture and the severity of drought 
conditions. While relative humidity appears more consistent, 
the variability observed in SPI, RAI, and SAI underscores the 
intricate interplay of precipitation patterns, temperature, and 
atmospheric dynamics in influencing drought conditions. 
These findings underscore the importance of considering 
multiple indices and climatic parameters for effective drought 
monitoring and mitigation strategies.

Fig. 5: Temporal Comparison of Average Relative Humidity and 

Drought Indices (SPI, RAI, SAI) from 1985 to 2022

Figure 6 presents the trends in maximum, minimum, and 
average temperatures over a 36-year period. The red bars 
represent maximum temperatures, consistently ranging 
between 40°C and 50°C, indicating high annual peaks. The 
yellow bars denote minimum temperatures, generally 
ranging between 0°C and 20°C, exhibiting considerable 
variation across the years. The green bars depict average 
temperatures, which remain relatively stable, fluctuating 
between 15°C and 30°C. The consistent range of maximum 
and minimum temperatures suggests a stable thermal 
amplitude over the years, with no substantial long-term 
increase or decrease observed. These data underscore the 
persistence of extreme heat events, which may pose 
challenges for agriculture, water resource management, and 
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public health. The notable difference between maximum and 
minimum temperatures emphasizes significant diurnal and 
seasonal variability, which is critical for understanding local 
climate dynamics and implementing climate adaptation 
strategies.

Fig. 6: Annual Temperature Variations of Mahi river basin (1985-2021)

Figure 7 presents the trajectory of the Standardized 
Precipitation Index (SPI) from 1980 to 2030, elucidating 
fluctuations in wet and dry conditions over this period. 
Positive SPI values signify wetter-than-average conditions, 
whereas negative values indicate drier-than-average periods. 
The data reveal significant positive SPI peaks in years such as 
1997, 1991, and 2013, suggesting extreme wet events, 
potentially influenced by phenomena such as El Niño. In 
contrast, notable negative SPI values during the early 1980s 
and 2010–2020 suggest prolonged drought conditions, with 
the latter period showing an increased frequency of 
consecutive dry years, consistent with global trends of 
intensified drought due to climate change. This variability 
reflects evolving climate dynamics, where earlier years 
display more balanced cycles of wet and dry conditions, while 
the post-2000 period indicates a gradual shift towards more 
arid conditions. Such trends may have profound implications 
for water resources, agriculture, and ecosystems, particularly 
if negative SPI values continue to predominate in the 
projected future. During the 1980s to mid-1990s, wetter 
conditions prevailed, with peak SPI values in 1991 (~0.26) 
suggesting enhanced rainfall likely linked to favorable 
monsoons. The late 1990s experienced a shift, with 1997 
recording a significant drought (SPI ~ -0.18), coinciding with a 
strong El Niño event. From 2000 to 2010, SPI values remained 
relatively stable, indicating near-normal rainfall with 
minimal extremes. However, the period from 2011 onward 
exhibited increased variability, with alternating dry and wet 
years, including wetter 2015 and 2021, and drier 2016 and 
2018. Overall, the SPI trend reveals a transition from 
consistently wet conditions to greater climatic variability and 
drought frequency, underscoring the growing need for 
proactive drought assessment and adaptive water resource 
management. The observed extremes highlight the increasing 
unpredictability of precipitation patterns, necessitating 
adaptive measures to mitigate the impacts of both drought 
and excessive rainfall. Understanding these trends is crucial 
for sustainable water management and developing climate 
resilience strategies, particularly in regions vulnerable to 
changing precipitation patterns. Overall, the graph 
underscores the importance of monitoring SPI as a key 
indicator of hydrological and climate variability.

Fig. 7: Trend in Average SPI Over Time (1980-2030)

Figure 8 presents the trend in the Average Rainfall Anomaly 
Index (RAI) from 1980 to 2030, illustrating temporal variations 
in precipitation. The RAI measures deviations from average 
precipitation, with negative values indicating below-average 
and positive values signifying above-average rainfall 
conditions. The dotted trendline reveals a slight upward 
trajectory in rainfall anomalies, as represented by the equation 
y=0.0733x−146.88 and an R2 value of 0.2656, suggesting a weak 
positive correlation between time and average RAI. Although 
the data points display considerable variability, with several 
extreme positive anomalies (e.g., years of heavy rainfall) and 
negative anomalies (e.g., drought years), the overall increase 
in average RAI may suggest a tendency toward wetter 
conditions in certain periods. However, the relatively low R2 
value indicates that the trendline does not fully account for the 
variability in rainfall anomalies, underscoring the complexity 
and unpredictability of precipitation patterns. If sustained, 
this upward trend could indicate shifts in regional climate 
systems, potentially affecting water resource management 
and agricultural planning in the future.

Fig. 8: Trend in Average RAI Over Time (1980-2030)

Figure 9 presents the trend in the Average Standardized 
Anomaly Index (SAI) from 1980 to 2030, highlighting 
fluctuations in climate variability. The SAI measures 
deviations from typical conditions, with positive values 
indicating wetter or more favorable conditions and negative 
values signifying drier or adverse anomalies. The dotted 
trendline shows a slight positive increase over the observed 
period, represented by the equation y=0.0821x−164.77, with an 
R2 value of 0.2837. This suggests a weak correlation between 
time and the SAI, indicating a modest trend towards 
improving conditions or increased wetness. However, the 
significant dispersion of data points reveals substantial 
variability, with extreme negative anomalies observed prior to 
2000 and a more frequent clustering of positive anomalies after 
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2010. The upward trend may reflect long-term shifts in 
regional climatic patterns, potentially influenced by changes 
in precipitation or temperature dynamics. While the R2 value 
suggests limited explanatory power of the trendline, the 
overall increase in SAI could indicate a gradual progression 
towards more favorable environmental conditions in certain 
areas, although the variability underscores the continued 
unpredictability of climate systems. Understanding these 
trends is crucial for anticipating potential impacts on 
agriculture, ecosystems and water resource management.

Fig. 9: Trend Analysis of Mean SAI 

Fig. 10 illustrates the trend in average relative humidity 
(RH%) from 1980 to 2030, with data points depicted as orange 
dots and a fitted linear regression line included. The equation 
of the trend line is y = 0.2911x - 535, indicating a gradual 
increase in RH% over the years, with an annual rate of 
approximately 0.2911% per year. The coefficient of 
determination (R² = 0.4465) suggests a moderate correlation 
between year and average RH%, implying that additional 
factors may influence the variation. The graph demonstrates a 
notable upward trend in relative humidity over the observed 
period.

Fig. 10: Trend Analysis of Mean Relative Humidity (%) Over Time 

Year Average SPI Average RAI Average SAI

1992 0.25 -1.665366411 -5.829222011

1993 0 -0.834306412 -0.294269595

1994 0.045661125 2.776192915 2.409209196

1995 0.117608902 -1.152722967 -0.638628984

1996 5.61642E-16 -0.213860034 0.226585586

1997 -0.078903338 1.066733901 0.935920736

1998 -1.09716E-15 0.16021317 0.470965593

1999 0.049525008 -1.932854888 -1.250881653

2000 4.44089E-16 -1.945172877 -2.287259632

2001 -9.63282E-16 -1.873091143 -2.416374121

2002 7.05318E-16 -2.314948797 -2.450669785

2003 0.026159605 0.893151593 0.410576976

2004 0 0.387660113 0.257587306

2005 0.0228039 1.033836439 0.586886719

2006 -3.13475E-16 2.920784041 2.018733315

2007 5.11038E-05 1.609800886 0.719950266

2008 2.15514E-16 -0.36009044 -0.057676381

2009 0.049249225 -1.20592442 -0.752662725

2010 0.029499438 1.131598665 0.641094989

2011 0.065324337 0.458827712 0.766042512

2012 0.084554289 -0.252591748 0.146208458

2013 0.024220185 2.505356832 1.105779908

2014 -1.05798E-15 -0.692814961 -0.321293975

2015 0.134955995 -0.398513888 -0.147666769

2016 -0.028746146 0.504694369 0.366008799

2017 -1.67187E-15 0.287199533 0.707046095

2018 -0.046157216 -1.057543445 -0.613531876

2019 -0.032518269 3.400499679 2.138616107

2020 0.038352677 1.949660453 1.408351036

2021 -0.031608354 1.451167832 1.514981318

2022 0.078812384 1.958170235 2.12421095
Table 4: Summary of Average Drought Indices (SPI, RAI, SAI) by 

Year (1985–2022)

Year Average SPI Average RAI Average SAI

1985 -0.15430335 -1.65635213 -4.063449968

1986 -2.48167E-16 -1.726502972 -1.215564583

1987 0.14253104 -2.483162522 -2.008678592

1988 5.48581E-16 0.137890255 0.429346476

1989 -0.000158123 -1.654913313 -1.775568573

1990 -6.26949E-16 0.142876162 0.409310878

1991 0.076902343 -1.323040218 -1.483325074

The summary presented in Table 4, which details the average 
drought indices (SPI, RAI, SAI) from 1985 to 2022, reveals a 
dynamic pattern of drought conditions throughout the study 
period. Years characterized by significantly negative SPI, RAI, 
and SAI values, such as 1985, 1992, and 2002, are indicative of 
severe drought events. In contrast, periods with positive 
values across these indices, such as 1994, 2006, and 2019, 
suggest wetter conditions or recovery from drought. Notably, 
the RAI often exhibits more pronounced fluctuations 
compared to the SPI and SAI, underscoring its sensitivity to 
extreme precipitation anomalies. The high positive indices 
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observed in recent years, particularly from 2020 to 2022, imply improved hydrological conditions, potentially influenced by 
climatic variability or regional interventions. Overall, these trends emphasize the necessity for continuous monitoring and 
adaptive water resource management to address the variability in drought conditions.

Variable Observations Obs. with 

missing data

Obs. without 

missing data

Minimum Maximum Mean Std. 

deviation

Average SPI 38 0 38 -0.154 0.250 0.023 0.067

Average Precipitation

(mm)

38 0 38 173.970 743.510 423.438 140.086

Table 5: Summary statistics Year (1985–2022)

Table 5 provides a summary of the statistical characteristics 
for two primary variables: Average SPI (Standardized 
Precipitation Index) and Average Precipitation (in mm). The 
table reveals that there are 38 total observations for both 
variables, with no missing data. For the Average SPI, the 
values range from a minimum of -0.154 to a maximum of 
0.250, with a mean of 0.023, indicating predominantly neutral 
conditions concerning precipitation anomalies. The standard 
deviation for SPI is 0.067, suggesting a moderate degree of 
variability around the mean. In contrast, the Average 
Precipitation values exhibit a more extensive range, from 
173.970 mm to 743.510 mm, with a mean of 423.438 mm, 
reflecting substantial variability in precipitation levels across 
the observations. The standard deviation for Average 
Precipitation is 140.086 mm, indicating considerable 
variability in the precipitation amounts observed throughout 
the study period. These statistics provide a comprehensive 
overview of the distribution and variability of both 
precipitation and SPI, offering valuable insights into the 
hydrological conditions during the study period.

Table 6: Principal Component Analysis (Eigenvalues)

 F1 F2

Eigenvalue 1.198 0.802

Variability (%) 59.899 40.101

Cumulative % 59.899 100.000

Table 6 delineates the outcomes of a Principal Component 
Analysis (PCA) conducted on the dataset, highlighting the 
eigenvalues, percentages of variability, and cumulative 
variability for the initial two principal components (F1 and 
F2). The eigenvalue for the first principal component (F1) is 
1.198, signifying that it accounts for a substantial portion of 
the total variance in the data, with 59.899% of the total 
variability explained by this component. The second principal 
component (F2) possesses an eigenvalue of 0.802, accounting 
for the remaining 40.101% of the variance. Together, F1 and F2 
elucidate 100% of the total variance, affirming that these two 
components provide a comprehensive representation of the 
underlying patterns in the dataset. This analysis underscores 
the importance of dimensionality reduction, as it 
demonstrates that two principal components suffice to 

characterize the key variability within the data, which can 
subsequently be employed for further analysis or 
visualization. Figure 11 illustrates the eigenvalues for the two 
principal components (F1 and F2) derived from principal 
component analysis (PCA), with the left y-axis representing 
eigenvalues and the right y-axis depicting the cumulative 
percentage of explained variability. The eigenvalue of F1 
exceeds 1.2, indicating that it captures a substantial portion of 
the dataset's variance, while F2, with an eigenvalue below 1, 
contributes less significantly. F1 accounts for approximately 
60% of the total variability, and the cumulative contribution of 
both components reaches 100%, fully representing the 
dataset's variability. The precipitous decline in eigenvalues 
after F1 underscores diminishing returns in variance 
explained, consistent with the "elbow criterion" for selecting 
key components. This analysis is crucial for dimensionality 
reduction, facilitating efficient data interpretation and feature 
selection while preserving the majority of the dataset's 
variability.

Fig. 11: Relationship Between Eigenvalues and Cumulative Variance 

in Principal Component Analysis

Table 7: Eigenvectors

 F1 F2

Average SPI 0.707 0.707

Average Precipitation(mm) -0.707 0.707



Table 7 delineates the eigenvectors corresponding to the first 
two principal components (F1 and F2) obtained from the 
Principal Component Analysis (PCA). These eigenvectors 
reveal the extent to which each variable contributes to the 
principal components. For F1, both the Average Standardized 
Precipitation Index (SPI) and Average Precipitation exhibit a 
value of 0.707, indicating that these variables contribute 
equally and positively to the first component. This suggests 
that F1 is significantly influenced by both SPI and 
precipitation, with these variables demonstrating a positive 
correlation within the context of this component. In contrast, 
for F2, the Average SPI is assigned a value of -0.707, whereas 
Average Precipitation retains a value of 0.707, signifying an 
inverse relationship. The negative coefficient for SPI and the 
positive coefficient for precipitation imply that F2 
encapsulates the inverse relationship between these variables, 
where increased precipitation correlates with decreased SPI 
values (indicative of wetter conditions) and vice versa. These 
eigenvectors offer valuable insights into the data structure, 
elucidating the relationships between variables and principal 
components, thereby facilitating the understanding of 
underlying patterns within the dataset.

Table 8: Factor loadings

 F1 F2

Average SPI 0.774 0.633

Average Precipitation(mm) -0.774 0.633

Table 8 presents the factor loadings for the first two principal 
components (F1 and F2), which represent the relationship 
between the original variables (Average SPI and Average 
Precipitation) and the derived factors. The factor loadings 
indicate the strength of association between each variable and 
each principal component. For F1, the factor loading for 
Average SPI is 0.774, and for Average Precipitation, it is -0.774, 
demonstrating a strong negative correlation between SPI and 
precipitation within this factor. This suggests that F1 captures 
the contrast between arid and humid conditions, where 
higher SPI values (indicating more arid conditions) are 
associated with lower precipitation values, and vice versa. For 
F2, both the Average SPI and Average Precipitation have 
factor loadings of 0.633, indicating a moderate positive 
relationship between these variables and F2. This suggests 
that F2 reflects a less extreme, more balanced relationship 
where both SPI and precipitation are positively correlated, 
albeit to a lesser extent than in F1. These factor loadings 
facilitate the interpretation of the underlying patterns 
represented by the principal components and provide 
insights into the interaction between precipitation and SPI 
within the dataset.

 F1 F2

Average SPI 0.774 0.633

Average Precipitation(mm) -0.774 0.633

Table 9: Correlations between variables and factors

Table 9 delineates the correlations between the original 
variables, namely Average SPI and Average Precipitation, and 
the two principal components, F1 and F2. These correlations 
elucidate the magnitude and direction of the relationship 
between each variable and the derived factors. For F1, the 
correlation between Average SPI and F1 is 0.774, whereas the 
correlation between Average Precipitation and F1 is -0.774, 
indicating a strong negative relationship. This suggests that 
F1 encapsulates the inverse relationship between SPI and 
precipitation, with higher SPI values (indicative of more arid 
conditions) associated with lower precipitation, and vice 
versa. Conversely, for F2, both Average SPI and Average 
Precipitation exhibit a correlation of 0.633, indicating a 
moderate positive relationship. This implies that F2 
represents a scenario where both variables tend to increase or 
decrease concomitantly, with higher precipitation associated 
with higher SPI values (indicative of more humid conditions). 
These correlations provide valuable insights into how the 
original variables contribute to the principal components and 
facilitate the understanding of the underlying patterns of 
variability in the dataset.

Figure 12 presents a biplot that delineates the relationship 
between average precipitation (mm) and the Standardized 
Precipitation Index (SPI) along two principal components, F1 
(59.90%) and F2 (40.10%), which together account for the 
entirety of the variance. The average SPI demonstrates a 
strong association with F1, indicating its significant 
contribution to the primary source of variation. In contrast, 
average precipitation is more closely aligned with F2, 
suggesting its predominant role in explaining the secondary 
component of variability. The near-orthogonal relationship 
between these two variables implies a low correlation within 
the dataset. This observation highlights that while SPI and 
precipitation are related to hydrological conditions, they 
capture distinct dimensions of variability, thereby 
underscoring the importance of both metrics in 
comprehensive drought analysis.

Fig. 12: Biplot Analysis of Average Precipitation and SPI on Principal 

Components F1 and F2

September 2025 Kumar et al [Journal of AgriSearch, Vol.12, No.3]

158



Table 10: Contribution of the variables (%)

 F1 F2

Average SPI 50.000 50.000

Average Precipitation(mm) 50.000 50.000

Table 10 delineates the contribution of each variable to the two 
principal components (F1 and F2), with the percentages 
indicating the extent to which each variable contributes to the 
overall variance explained by the components. For both F1 
and F2, the contributions of Average SPI and Average 
Precipitation are equally distributed, with each variable 
contributing 50% to the respective component. This indicates 
that both variables play an equivalent and significant role in 
defining the structure of each principal component. 
Specifically, F1 is composed of an equal combination of 
Average SPI and Average Precipitation, while F2 also reflects 
an equal influence of both variables. The equal distribution of 
contributions suggests that both SPI and precipitation are key 
factors in elucidating the variability captured by the principal 
components, and there is no predominance of one variable 
over the other in shaping the principal components. This 
balanced contribution underscores the interrelationship 
between these variables and their joint influence on the 
underlying patterns of the data.

Figure 13 presents the distribution of observations based on 
their projections onto two principal components: F1, which 
accounts for 59.90% of the variance, and F2, which explains 
40.10%, collectively representing the entirety of the total 
variability. The observations are widely dispersed across the 
four quadrants, indicating heterogeneity in the patterns 
captured by the two components. Observations such as Obs3 
and Obs38 are positioned at the extremes, suggesting they 
exert significant influence in defining the variability along F1 
and F2, respectively. Observations clustered near the origin 
(e.g., Obs18, Obs16, and Obs90) exhibit minimal contributions 
to variability, indicating similar characteristics among these 
data points. The graphical representation aids in identifying 
outliers, clusters, and patterns within the dataset, 
highlighting the utility of Principal Component Analysis 
(PCA) in elucidating underlying structures and relationships 
among the observations.

Fig. 13: Principal Component Analysis: Projection of Observations 

on Components F1 and F2

Figure 14 depicts the relationship between two principal 
components, F1 (59.90%) and F2 (40.10%), which together 
account for the entirety of the variability in the dataset. F1 
shows a strong association with "Average SPI," as indicated by 
its pronounced vector alignment along the positive F1 axis, 
whereas F2 is correlated with "Average Precipitation (mm)," 
with its vector predominantly aligned along the positive F2 
axis. Observations such as Obs3, Obs8, and Obs11 correspond 
to elevated values of "Average SPI," while Obs10 and Obs38 
are linked to higher "Average Precipitation (mm)." 
Observations in the negative F1 or F2 regions, such as Obs1 
and Obs13, exhibit opposing trends. The orthogonal 
arrangement of the vectors suggests minimal correlation 
between the two variables. This biplot serves as an effective 
tool for elucidating patterns, clustering, and variable 
importance, thereby facilitating the interpretation of 
multivariate data in hydrological or environmental research.

Fig. 14: Biplot Representation of Principal Components (F1 and F2) 

with Active Variables and Observations 

Table 11: Axes homogeneity index:

 Value

F1 0.289

F2 0.395

Table 11 presents the Axes Homogeneity Index (AHI) for the 
first two principal components (F1 and F2), which quantifies 
the degree of homogeneity or the extent to which each 
component effectively captures a uniform structure within 
the data. The AHI values for F1 and F2 are 0.289 and 0.395, 
respectively, indicating moderate homogeneity for both 
components. A lower AHI value suggests that F1 and F2 
exhibit relatively less consistent or more varied contributions 
from the variables involved, implying that these components 
may represent diverse patterns or factors within the data. 
Specifically, the higher value for F2 (0.395) suggests that this 
component may encompass a broader range of variation or 
more complex relationships compared to F1, which has a 
slightly lower value of 0.289. The AHI values thus provide 
insight into the efficacy of each principal component in 
capturing a coherent structure of the data, with both 
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components demonstrating moderate, but not optimal, 
homogeneity in the relationships they represent.

Figure 15 presents the homogeneity index values for the two 
principal components, F1 and F2, which reflect their 
consistency and representativeness in elucidating the 
dataset's structure. F2 exhibits a higher homogeneity index, 
surpassing 0.4, indicating a greater uniformity in its 
contribution to the dataset's variability. Conversely, F1 
possesses a lower homogeneity index, approximately 0.3, 
suggesting relatively less structural coherence. The greater 
homogeneity of F2 underscores its reliability in capturing 
stable patterns within the data, whereas the slightly lower 
homogeneity of F1 may be influenced by the presence of more 
diverse or less correlated variables. Collectively, these 
findings highlight the complementary roles of F1 and F2 in 
representing the dataset, emphasizing the importance of 
considering both variance and homogeneity when selecting 
principal components for applications such as clustering, 
classification, or dimensionality reduction.

Fig. 14: Homogeneity Index Analysis on Principal Component Axes 

F1 and F2

CONCLUSION

The study of climate variability and drought patterns in the 

Mahi River Basin from 1985 to 2022 indicates a 1.2 °C increase 

in average temperature, coupled with highly unpredictable 

rainfall ranging from less than 400 mm during drought years 

to over 1,000 mm in wetter periods, which has heightened 

evapotranspiration and water stress. Drought indices such as 

SPI, RAI, and SAI effectively captured these extremes, with 

SPI falling below –1.5 in severe droughts and rising above +2.0 

in wet periods, while RAI and SAI showed slight increases 

after 2010 despite ongoing variability. Principal Component 

Analysis (PCA) demonstrated that SPI and precipitation 

together account for 100% of the variance (F1 = 59.9%, F2 = 

40.1%), with SPI closely associated with drought severity and 

precipitation indicating broader hydrometeorological 

changes. The orthogonal relationship between these variables 

emphasizes their complementary roles in monitoring drought 

dynamics. These results highlight the importance of 

combining robust drought indices with multivariate tools like 

PCA to enhance adaptive water management and resilience 

planning in drought-prone areas.
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