Genome editing for speed breeding of horticultural crops
Genome editing for horticultural crops
DOI:
https://doi.org/10.21921/jas.v9i03.11001Keywords:
CRISPR, crop imrovement, genome editing, plant stress, rapid breedingAbstract
Climate change is one of the burdensome factors of agricultural productivity. Adverse biotic and abiotic stress impacts directly on plants resulting in poor productivity and yield loss. Modern protocols in genome editing using CRISPR, TALENs, ZFNs and Meganucleases enable editing at the precise site. The versatility of genome editing tools makes its application useful in fields like crop improvement, gene functional analyses, pathway research, studying animal models, genetic analyses, epigenetic research, drug development and biofuels research etc. The technological advancements in genome editing are adopted in both monocots and dicots for crop improvement. These technologies are precise, independent of breeding limitations like unexplored germplasm resources and reduce breeding cycles drastically from decades to years to meet the global requirements. The application of genome editing in agriculture proves to be a potential source for developing crops with biotic and abiotic stress, improved yield with better nutritional qualities.
References
Abdallah NA, Prakash CS and McHughen AG. 2015. Genome editing for crop improvement: challenges and opportunities. GM Crops & Food6(4):183–205. https://doi.org/10.1080/21645698.2015.1129937
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA and Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science315(5819):1709–1712. https://doi.org/10.1126/science.1138140
Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE and Daulhac A. 2016. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal14(1):169–176. https://doi.org/10.1111/pbi.12370
Epinat J, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Pâques F and Lacroix E. 2003. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. NucleicAcidsResearch31(11):2952–2962. https://doi.org/10.1093/nar/gkg375
Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC and Jantz D. 2010. Heritable targeted mutagenesis in maize using a designed endonuclease. The Plant Journal 61(1):176–187. https://doi.org/10.1111/j.1365-313X.2009.04041.x
Gasiunas G, Barrangou R, Horvath Pand Siksnys V. 2012. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences109(39):E2579–E2586. https://doi.org/10.1073/pnas.1208507109
Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G and Randau L. 2019. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNABiology16(4) 504–517. https://doi.org/10.1080/15476286.2018.1504546
Haft DH, Selengut J, Mongodin EF and Nelson KE. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology1(6):e60. https://doi.org/10.1371/journal.pcbi.0010060
He J and Deem MW. 2010. Heterogeneous diversity of spacers within CRISPR (clustered regularly interspaced short palindromic repeats). Physical Review Letters105(12):128102. https://doi.org/10.1103/PhysRevLett.105.128102
Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology169(12):5429-5433.https://doi.org/10.1128/jb.169.12.5429-5433.1987
Jia J, Jin Y, Bian T, Wu D, Yang L, Terada N, Wu W and Jin S. 2014. Bacterial delivery of TALEN proteins for human genome editing. PloSOne9(3):e91547. https://doi.org/10.1371/journal.pone.0091547
Joung, JK and Sander JD. 2013. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology14(1):49–55. https://doi.org/10.1038/nrm3486
Kamburova VS, Nikitina EV Shermatov SE, Buriey ZT, Kumpatla SP, Emani C and Abdurakhmonov IY. 2017. Genome editing in plants: an overview of tools and applications. International Journal of Agronomyhttps://doi.org/10.1155/2017/7315351
Karimi Z, Ahmadi A, Najafi A and Ranjbar R .2018. Bacterial CRISPR regions: general features and their potential for epidemiological molecular typing studies. The Open Microbiology Journal12:59. https://doi.org/10.2174%2F1874285801812010059
Kaur N, Alok A, Kumar P, Kaur N, Awasthi P, Chaturvedi S, Pandey P, Pandey A, Pandey AK and Tiwari S. 2020. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for ß-carotene biosynthesis in banana fruit. MetabolicEngineering59:76–86. https://doi.org/10.1016/j.ymben.2020.01.008
Kim YG, Cha J and Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences93(3):1156–1160. https://doi.org/10.1073/pnas.93.3.1156
Klug A. 2010. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annual Review of Biochemistry79:213–231. https://doi.org/10.1146/annurev-biochem-010909-095056
Li X, Wang Y, Chen S, Tian H, Fu D, Zhu B, Luo Y and Zhu H. 2018. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. FrontiersinPlantScience9:559. https://doi.org/10.3389/fpls.2018.00559
Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI and Yakunin AF. 2011. Evolution and classification of the CRISPR–Cas systems. NatureReviewsMicrobiology9(6):467–477. https://doi.org/10.1038/nrmicro2577
Nekrasov V, Staskawicz B, Weigel D, Jones JDG and Kamoun S. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. NatureBiotechnology31(8):691–693.https://doi.org/10.1038/nbt.2655
Newsom S, Parameshwaran HP, Martin L, Rajan R (2021) The CRISPR-Cas mechanism for adaptive immunity and alternate bacterial functions fuels diverse biotechnologies. Frontiers in Cellular and Infection Microbiology10:619763. https://doi.org/10.3389/fcimb.2020.619763
Shao X, Wu S, Dou T, Zhu H, Hu C, Huo H, He W, Deng G, Sheng O and Bi F. 2020. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. PlantBiotechnologyJournal18(1):17. https://doi.org/10.1111/pbi.13216
Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ and Bravo J. 2006. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research34(22):e149–e149. https://doi.org/10.1093/nar/gkl720
Sun Z, Li N, Huang G, Xu J, Pan Y, Wang Z, Tang Q, Song M and Wang X. 2013. Site-S pecific Gene Targeting Using Transcription Activator-Like Effector (TALE)-B ased Nuclease in Brassica oleracea. Journal of Integrative Plant Biology 55(11):1092–1103. https://doi.org/10.1111/jipb.12091
Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK and Voytas DF. 2009. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature459(7245):442–445. https://doi.org/10.1038/nature07845
Tränkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K and Malnoy M. 2010. Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta232(6):1309–1324. https://doi.org/10.1007/s00425-010-1254-2
Wang B, Li N, Huang S, Hu J, Wang Q, Tang Y, Yang T, Asmutola P, Wang J and Yu Q. 2021. Enhanced soluble sugar content in tomato fruit using CRISPR/Cas9-mediated SlINVINH1 and SlVPE5 gene editing. PeerJ9:e12478. https://doi.org/10.7717/peerj.12478
Xu J, Hua K and Lang Z. 2019. Genome editing for horticultural crop improvement. Horticulture Research6. https://doi.org/10.1038/s41438-019-0196-5
Yang Y, Zhu G, Li R, Yan S, Fu D, Zhu B, Tian H, Luo Y and Zhu H. 2017. The RNA editing factor SlORRM4 is required for normal fruit ripening in tomato. PlantPhysiology175(4):1690–1702. https://doi.org/10.1104/pp.17.01265
Zhang H, Liu X, Liu J, Ou Y, Lin Y, Li M, Song B and Xie C. 2013. A novel RING finger gene, SbRFP1, increases resistance to cold-induced sweetening of potato tubers. FEBSLetters587(6):749–755. https://doi.org/10.1016/j.febslet.2013.01.066